Electronic Structural Moiré Pattern Effects on MoS2/MoSe2 2D Heterostructures

The structural and electronic properties of MoS2/MoSe2 bilayers are calculated using first-principles methods. It is found that the interlayer van der Waals interaction is not strong enough to form a lattice-matched coherent heterostructure. Instead, a nanometer-scale Moiré pattern structure will b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2013, Vol.13 (11), p.5485-5490
Hauptverfasser: Kang, Jun, Li, Jingbo, Li, Shu-Shen, Xia, Jian-Bai, Wang, Lin-Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5490
container_issue 11
container_start_page 5485
container_title Nano letters
container_volume 13
creator Kang, Jun
Li, Jingbo
Li, Shu-Shen
Xia, Jian-Bai
Wang, Lin-Wang
description The structural and electronic properties of MoS2/MoSe2 bilayers are calculated using first-principles methods. It is found that the interlayer van der Waals interaction is not strong enough to form a lattice-matched coherent heterostructure. Instead, a nanometer-scale Moiré pattern structure will be formed. By analyzing the electronic structures of different stacking configurations, we predict that the valence-band maximum (VBM) state will come from the Γ point due to interlayer electronic coupling. This is confirmed by a direct calculation of a Moiré pattern supercell containing 6630 atoms using the linear scaling three-dimensional fragment method. The VBM state is found to be strongly localized, while the conduction band minimum (CBM) state is only weakly localized, and it comes from the MoS2 layer at the K point. We predict such wave function localization can be a general feature for many two-dimensional (2D) van der Waals heterostructures and can have major impacts on the carrier mobility and other electronic and optical properties.
doi_str_mv 10.1021/nl4030648
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1458504204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1458504204</sourcerecordid><originalsourceid>FETCH-LOGICAL-a201t-2f7ebede28c2291630b1d19b1e2fd29d67dece1daebe0a1aae5fad53c14096dc3</originalsourceid><addsrcrecordid>eNpF0c1OwzAMAOAIgdgYHHgB1AsSlzLnp11zRGP8SENDGpyjNHGlTl07kvTAkffjoQiibJc4kj9bsk3IJYVbCoxO20YAh1wUR2RMMw5pLiU73v8LMSJn3m8AQPIMTsmICZhJmfExWS0aNMF1bW2SdXC9Cb3TTfLS1Q6_v5JXHQK6NllUVWQ-6dqYWrNpfJAl7D55wpjv_FCJ_pycVLrxeDHECXl_WLzNn9Ll6vF5frdMNQMaUlbNsESLrDCMSZpzKKmlsqTIKsukzWcWDVKrowJNtcas0jbjhgqQuTV8Qm7--u5c99GjD2pbe4NNo1vseq-oyIoMBAMR6dVA-3KLVu1cvdXuU_0vIYLrAWhvdFM53ZraH1xUBS_EwWnj1abrXRsnVBTU7xHU_gj8BxFVds8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1458504204</pqid></control><display><type>article</type><title>Electronic Structural Moiré Pattern Effects on MoS2/MoSe2 2D Heterostructures</title><source>ACS Publications</source><source>MEDLINE</source><creator>Kang, Jun ; Li, Jingbo ; Li, Shu-Shen ; Xia, Jian-Bai ; Wang, Lin-Wang</creator><creatorcontrib>Kang, Jun ; Li, Jingbo ; Li, Shu-Shen ; Xia, Jian-Bai ; Wang, Lin-Wang</creatorcontrib><description>The structural and electronic properties of MoS2/MoSe2 bilayers are calculated using first-principles methods. It is found that the interlayer van der Waals interaction is not strong enough to form a lattice-matched coherent heterostructure. Instead, a nanometer-scale Moiré pattern structure will be formed. By analyzing the electronic structures of different stacking configurations, we predict that the valence-band maximum (VBM) state will come from the Γ point due to interlayer electronic coupling. This is confirmed by a direct calculation of a Moiré pattern supercell containing 6630 atoms using the linear scaling three-dimensional fragment method. The VBM state is found to be strongly localized, while the conduction band minimum (CBM) state is only weakly localized, and it comes from the MoS2 layer at the K point. We predict such wave function localization can be a general feature for many two-dimensional (2D) van der Waals heterostructures and can have major impacts on the carrier mobility and other electronic and optical properties.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl4030648</identifier><identifier>PMID: 24079953</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Disulfides - chemistry ; Electron states ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals ; Exact sciences and technology ; Methods of electronic structure calculations ; Models, Molecular ; Moire Topography ; Molybdenum - chemistry ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Optics and Photonics - methods ; Physics ; Selenium - chemistry ; Structure of solids and liquids; crystallography</subject><ispartof>Nano letters, 2013, Vol.13 (11), p.5485-5490</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl4030648$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl4030648$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,4010,27053,27900,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27998384$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24079953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Jun</creatorcontrib><creatorcontrib>Li, Jingbo</creatorcontrib><creatorcontrib>Li, Shu-Shen</creatorcontrib><creatorcontrib>Xia, Jian-Bai</creatorcontrib><creatorcontrib>Wang, Lin-Wang</creatorcontrib><title>Electronic Structural Moiré Pattern Effects on MoS2/MoSe2 2D Heterostructures</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The structural and electronic properties of MoS2/MoSe2 bilayers are calculated using first-principles methods. It is found that the interlayer van der Waals interaction is not strong enough to form a lattice-matched coherent heterostructure. Instead, a nanometer-scale Moiré pattern structure will be formed. By analyzing the electronic structures of different stacking configurations, we predict that the valence-band maximum (VBM) state will come from the Γ point due to interlayer electronic coupling. This is confirmed by a direct calculation of a Moiré pattern supercell containing 6630 atoms using the linear scaling three-dimensional fragment method. The VBM state is found to be strongly localized, while the conduction band minimum (CBM) state is only weakly localized, and it comes from the MoS2 layer at the K point. We predict such wave function localization can be a general feature for many two-dimensional (2D) van der Waals heterostructures and can have major impacts on the carrier mobility and other electronic and optical properties.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Disulfides - chemistry</subject><subject>Electron states</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Exact sciences and technology</subject><subject>Methods of electronic structure calculations</subject><subject>Models, Molecular</subject><subject>Moire Topography</subject><subject>Molybdenum - chemistry</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Optics and Photonics - methods</subject><subject>Physics</subject><subject>Selenium - chemistry</subject><subject>Structure of solids and liquids; crystallography</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpF0c1OwzAMAOAIgdgYHHgB1AsSlzLnp11zRGP8SENDGpyjNHGlTl07kvTAkffjoQiibJc4kj9bsk3IJYVbCoxO20YAh1wUR2RMMw5pLiU73v8LMSJn3m8AQPIMTsmICZhJmfExWS0aNMF1bW2SdXC9Cb3TTfLS1Q6_v5JXHQK6NllUVWQ-6dqYWrNpfJAl7D55wpjv_FCJ_pycVLrxeDHECXl_WLzNn9Ll6vF5frdMNQMaUlbNsESLrDCMSZpzKKmlsqTIKsukzWcWDVKrowJNtcas0jbjhgqQuTV8Qm7--u5c99GjD2pbe4NNo1vseq-oyIoMBAMR6dVA-3KLVu1cvdXuU_0vIYLrAWhvdFM53ZraH1xUBS_EwWnj1abrXRsnVBTU7xHU_gj8BxFVds8</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Kang, Jun</creator><creator>Li, Jingbo</creator><creator>Li, Shu-Shen</creator><creator>Xia, Jian-Bai</creator><creator>Wang, Lin-Wang</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>2013</creationdate><title>Electronic Structural Moiré Pattern Effects on MoS2/MoSe2 2D Heterostructures</title><author>Kang, Jun ; Li, Jingbo ; Li, Shu-Shen ; Xia, Jian-Bai ; Wang, Lin-Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a201t-2f7ebede28c2291630b1d19b1e2fd29d67dece1daebe0a1aae5fad53c14096dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Disulfides - chemistry</topic><topic>Electron states</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Exact sciences and technology</topic><topic>Methods of electronic structure calculations</topic><topic>Models, Molecular</topic><topic>Moire Topography</topic><topic>Molybdenum - chemistry</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Optics and Photonics - methods</topic><topic>Physics</topic><topic>Selenium - chemistry</topic><topic>Structure of solids and liquids; crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Jun</creatorcontrib><creatorcontrib>Li, Jingbo</creatorcontrib><creatorcontrib>Li, Shu-Shen</creatorcontrib><creatorcontrib>Xia, Jian-Bai</creatorcontrib><creatorcontrib>Wang, Lin-Wang</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Jun</au><au>Li, Jingbo</au><au>Li, Shu-Shen</au><au>Xia, Jian-Bai</au><au>Wang, Lin-Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Structural Moiré Pattern Effects on MoS2/MoSe2 2D Heterostructures</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2013</date><risdate>2013</risdate><volume>13</volume><issue>11</issue><spage>5485</spage><epage>5490</epage><pages>5485-5490</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The structural and electronic properties of MoS2/MoSe2 bilayers are calculated using first-principles methods. It is found that the interlayer van der Waals interaction is not strong enough to form a lattice-matched coherent heterostructure. Instead, a nanometer-scale Moiré pattern structure will be formed. By analyzing the electronic structures of different stacking configurations, we predict that the valence-band maximum (VBM) state will come from the Γ point due to interlayer electronic coupling. This is confirmed by a direct calculation of a Moiré pattern supercell containing 6630 atoms using the linear scaling three-dimensional fragment method. The VBM state is found to be strongly localized, while the conduction band minimum (CBM) state is only weakly localized, and it comes from the MoS2 layer at the K point. We predict such wave function localization can be a general feature for many two-dimensional (2D) van der Waals heterostructures and can have major impacts on the carrier mobility and other electronic and optical properties.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24079953</pmid><doi>10.1021/nl4030648</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2013, Vol.13 (11), p.5485-5490
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1458504204
source ACS Publications; MEDLINE
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Disulfides - chemistry
Electron states
Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals
Exact sciences and technology
Methods of electronic structure calculations
Models, Molecular
Moire Topography
Molybdenum - chemistry
Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals
Optics and Photonics - methods
Physics
Selenium - chemistry
Structure of solids and liquids
crystallography
title Electronic Structural Moiré Pattern Effects on MoS2/MoSe2 2D Heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Structural%20Moire%CC%81%20Pattern%20Effects%20on%20MoS2/MoSe2%202D%20Heterostructures&rft.jtitle=Nano%20letters&rft.au=Kang,%20Jun&rft.date=2013&rft.volume=13&rft.issue=11&rft.spage=5485&rft.epage=5490&rft.pages=5485-5490&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl4030648&rft_dat=%3Cproquest_pubme%3E1458504204%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1458504204&rft_id=info:pmid/24079953&rfr_iscdi=true