Electronic Structural Moiré Pattern Effects on MoS2/MoSe2 2D Heterostructures
The structural and electronic properties of MoS2/MoSe2 bilayers are calculated using first-principles methods. It is found that the interlayer van der Waals interaction is not strong enough to form a lattice-matched coherent heterostructure. Instead, a nanometer-scale Moiré pattern structure will b...
Gespeichert in:
Veröffentlicht in: | Nano letters 2013, Vol.13 (11), p.5485-5490 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5490 |
---|---|
container_issue | 11 |
container_start_page | 5485 |
container_title | Nano letters |
container_volume | 13 |
creator | Kang, Jun Li, Jingbo Li, Shu-Shen Xia, Jian-Bai Wang, Lin-Wang |
description | The structural and electronic properties of MoS2/MoSe2 bilayers are calculated using first-principles methods. It is found that the interlayer van der Waals interaction is not strong enough to form a lattice-matched coherent heterostructure. Instead, a nanometer-scale Moiré pattern structure will be formed. By analyzing the electronic structures of different stacking configurations, we predict that the valence-band maximum (VBM) state will come from the Γ point due to interlayer electronic coupling. This is confirmed by a direct calculation of a Moiré pattern supercell containing 6630 atoms using the linear scaling three-dimensional fragment method. The VBM state is found to be strongly localized, while the conduction band minimum (CBM) state is only weakly localized, and it comes from the MoS2 layer at the K point. We predict such wave function localization can be a general feature for many two-dimensional (2D) van der Waals heterostructures and can have major impacts on the carrier mobility and other electronic and optical properties. |
doi_str_mv | 10.1021/nl4030648 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1458504204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1458504204</sourcerecordid><originalsourceid>FETCH-LOGICAL-a201t-2f7ebede28c2291630b1d19b1e2fd29d67dece1daebe0a1aae5fad53c14096dc3</originalsourceid><addsrcrecordid>eNpF0c1OwzAMAOAIgdgYHHgB1AsSlzLnp11zRGP8SENDGpyjNHGlTl07kvTAkffjoQiibJc4kj9bsk3IJYVbCoxO20YAh1wUR2RMMw5pLiU73v8LMSJn3m8AQPIMTsmICZhJmfExWS0aNMF1bW2SdXC9Cb3TTfLS1Q6_v5JXHQK6NllUVWQ-6dqYWrNpfJAl7D55wpjv_FCJ_pycVLrxeDHECXl_WLzNn9Ll6vF5frdMNQMaUlbNsESLrDCMSZpzKKmlsqTIKsukzWcWDVKrowJNtcas0jbjhgqQuTV8Qm7--u5c99GjD2pbe4NNo1vseq-oyIoMBAMR6dVA-3KLVu1cvdXuU_0vIYLrAWhvdFM53ZraH1xUBS_EwWnj1abrXRsnVBTU7xHU_gj8BxFVds8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1458504204</pqid></control><display><type>article</type><title>Electronic Structural Moiré Pattern Effects on MoS2/MoSe2 2D Heterostructures</title><source>ACS Publications</source><source>MEDLINE</source><creator>Kang, Jun ; Li, Jingbo ; Li, Shu-Shen ; Xia, Jian-Bai ; Wang, Lin-Wang</creator><creatorcontrib>Kang, Jun ; Li, Jingbo ; Li, Shu-Shen ; Xia, Jian-Bai ; Wang, Lin-Wang</creatorcontrib><description>The structural and electronic properties of MoS2/MoSe2 bilayers are calculated using first-principles methods. It is found that the interlayer van der Waals interaction is not strong enough to form a lattice-matched coherent heterostructure. Instead, a nanometer-scale Moiré pattern structure will be formed. By analyzing the electronic structures of different stacking configurations, we predict that the valence-band maximum (VBM) state will come from the Γ point due to interlayer electronic coupling. This is confirmed by a direct calculation of a Moiré pattern supercell containing 6630 atoms using the linear scaling three-dimensional fragment method. The VBM state is found to be strongly localized, while the conduction band minimum (CBM) state is only weakly localized, and it comes from the MoS2 layer at the K point. We predict such wave function localization can be a general feature for many two-dimensional (2D) van der Waals heterostructures and can have major impacts on the carrier mobility and other electronic and optical properties.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl4030648</identifier><identifier>PMID: 24079953</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Disulfides - chemistry ; Electron states ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals ; Exact sciences and technology ; Methods of electronic structure calculations ; Models, Molecular ; Moire Topography ; Molybdenum - chemistry ; Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals ; Optics and Photonics - methods ; Physics ; Selenium - chemistry ; Structure of solids and liquids; crystallography</subject><ispartof>Nano letters, 2013, Vol.13 (11), p.5485-5490</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl4030648$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl4030648$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,4010,27053,27900,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27998384$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24079953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Jun</creatorcontrib><creatorcontrib>Li, Jingbo</creatorcontrib><creatorcontrib>Li, Shu-Shen</creatorcontrib><creatorcontrib>Xia, Jian-Bai</creatorcontrib><creatorcontrib>Wang, Lin-Wang</creatorcontrib><title>Electronic Structural Moiré Pattern Effects on MoS2/MoSe2 2D Heterostructures</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The structural and electronic properties of MoS2/MoSe2 bilayers are calculated using first-principles methods. It is found that the interlayer van der Waals interaction is not strong enough to form a lattice-matched coherent heterostructure. Instead, a nanometer-scale Moiré pattern structure will be formed. By analyzing the electronic structures of different stacking configurations, we predict that the valence-band maximum (VBM) state will come from the Γ point due to interlayer electronic coupling. This is confirmed by a direct calculation of a Moiré pattern supercell containing 6630 atoms using the linear scaling three-dimensional fragment method. The VBM state is found to be strongly localized, while the conduction band minimum (CBM) state is only weakly localized, and it comes from the MoS2 layer at the K point. We predict such wave function localization can be a general feature for many two-dimensional (2D) van der Waals heterostructures and can have major impacts on the carrier mobility and other electronic and optical properties.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Disulfides - chemistry</subject><subject>Electron states</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Exact sciences and technology</subject><subject>Methods of electronic structure calculations</subject><subject>Models, Molecular</subject><subject>Moire Topography</subject><subject>Molybdenum - chemistry</subject><subject>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Optics and Photonics - methods</subject><subject>Physics</subject><subject>Selenium - chemistry</subject><subject>Structure of solids and liquids; crystallography</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpF0c1OwzAMAOAIgdgYHHgB1AsSlzLnp11zRGP8SENDGpyjNHGlTl07kvTAkffjoQiibJc4kj9bsk3IJYVbCoxO20YAh1wUR2RMMw5pLiU73v8LMSJn3m8AQPIMTsmICZhJmfExWS0aNMF1bW2SdXC9Cb3TTfLS1Q6_v5JXHQK6NllUVWQ-6dqYWrNpfJAl7D55wpjv_FCJ_pycVLrxeDHECXl_WLzNn9Ll6vF5frdMNQMaUlbNsESLrDCMSZpzKKmlsqTIKsukzWcWDVKrowJNtcas0jbjhgqQuTV8Qm7--u5c99GjD2pbe4NNo1vseq-oyIoMBAMR6dVA-3KLVu1cvdXuU_0vIYLrAWhvdFM53ZraH1xUBS_EwWnj1abrXRsnVBTU7xHU_gj8BxFVds8</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Kang, Jun</creator><creator>Li, Jingbo</creator><creator>Li, Shu-Shen</creator><creator>Xia, Jian-Bai</creator><creator>Wang, Lin-Wang</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>2013</creationdate><title>Electronic Structural Moiré Pattern Effects on MoS2/MoSe2 2D Heterostructures</title><author>Kang, Jun ; Li, Jingbo ; Li, Shu-Shen ; Xia, Jian-Bai ; Wang, Lin-Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a201t-2f7ebede28c2291630b1d19b1e2fd29d67dece1daebe0a1aae5fad53c14096dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Disulfides - chemistry</topic><topic>Electron states</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Exact sciences and technology</topic><topic>Methods of electronic structure calculations</topic><topic>Models, Molecular</topic><topic>Moire Topography</topic><topic>Molybdenum - chemistry</topic><topic>Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Optics and Photonics - methods</topic><topic>Physics</topic><topic>Selenium - chemistry</topic><topic>Structure of solids and liquids; crystallography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Jun</creatorcontrib><creatorcontrib>Li, Jingbo</creatorcontrib><creatorcontrib>Li, Shu-Shen</creatorcontrib><creatorcontrib>Xia, Jian-Bai</creatorcontrib><creatorcontrib>Wang, Lin-Wang</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Jun</au><au>Li, Jingbo</au><au>Li, Shu-Shen</au><au>Xia, Jian-Bai</au><au>Wang, Lin-Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic Structural Moiré Pattern Effects on MoS2/MoSe2 2D Heterostructures</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2013</date><risdate>2013</risdate><volume>13</volume><issue>11</issue><spage>5485</spage><epage>5490</epage><pages>5485-5490</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The structural and electronic properties of MoS2/MoSe2 bilayers are calculated using first-principles methods. It is found that the interlayer van der Waals interaction is not strong enough to form a lattice-matched coherent heterostructure. Instead, a nanometer-scale Moiré pattern structure will be formed. By analyzing the electronic structures of different stacking configurations, we predict that the valence-band maximum (VBM) state will come from the Γ point due to interlayer electronic coupling. This is confirmed by a direct calculation of a Moiré pattern supercell containing 6630 atoms using the linear scaling three-dimensional fragment method. The VBM state is found to be strongly localized, while the conduction band minimum (CBM) state is only weakly localized, and it comes from the MoS2 layer at the K point. We predict such wave function localization can be a general feature for many two-dimensional (2D) van der Waals heterostructures and can have major impacts on the carrier mobility and other electronic and optical properties.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24079953</pmid><doi>10.1021/nl4030648</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2013, Vol.13 (11), p.5485-5490 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1458504204 |
source | ACS Publications; MEDLINE |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Disulfides - chemistry Electron states Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals Exact sciences and technology Methods of electronic structure calculations Models, Molecular Moire Topography Molybdenum - chemistry Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals Optics and Photonics - methods Physics Selenium - chemistry Structure of solids and liquids crystallography |
title | Electronic Structural Moiré Pattern Effects on MoS2/MoSe2 2D Heterostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A31%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20Structural%20Moire%CC%81%20Pattern%20Effects%20on%20MoS2/MoSe2%202D%20Heterostructures&rft.jtitle=Nano%20letters&rft.au=Kang,%20Jun&rft.date=2013&rft.volume=13&rft.issue=11&rft.spage=5485&rft.epage=5490&rft.pages=5485-5490&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl4030648&rft_dat=%3Cproquest_pubme%3E1458504204%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1458504204&rft_id=info:pmid/24079953&rfr_iscdi=true |