Integration of ligand and structure-based virtual screening for identification of leading anabolic steroids

•We apply a QSAR model and a docking study in a heterogeneous data set of 269 AS.•The QSAR model for the AS explains structural features of the steroidal backbone.•Docking procedure predict the association of AS with the human androgen receptor.•14 steroids were identified as lead; the best was 7α-m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of steroid biochemistry and molecular biology 2013-11, Vol.138, p.348-358
Hauptverfasser: Alvarez-Ginarte, Yoanna María, Montero-Cabrera, Luis Alberto, García-de la Vega, José Manuel, Bencomo-Martínez, Alberto, Pupo, Amaury, Agramonte-Delgado, Alina, Marrero-Ponce, Yovani, Ruiz-García, José Alberto, Mikosch, Hans
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 358
container_issue
container_start_page 348
container_title The Journal of steroid biochemistry and molecular biology
container_volume 138
creator Alvarez-Ginarte, Yoanna María
Montero-Cabrera, Luis Alberto
García-de la Vega, José Manuel
Bencomo-Martínez, Alberto
Pupo, Amaury
Agramonte-Delgado, Alina
Marrero-Ponce, Yovani
Ruiz-García, José Alberto
Mikosch, Hans
description •We apply a QSAR model and a docking study in a heterogeneous data set of 269 AS.•The QSAR model for the AS explains structural features of the steroidal backbone.•Docking procedure predict the association of AS with the human androgen receptor.•14 steroids were identified as lead; the best was 7α-methylestr-4-en-3,17-dione. Parallel ligand- and structure-based virtual screenings of 269 steroids with anabolic activity evaluated in vivo were performed. The quantitative structure–activity relationship (QSAR) model expressed by selected descriptors as the octanol–water partition coefficient, the molar volume and the quantum mechanical calculated charge values on atoms C1, C2, C5, C9, C10, C14 and C17 of the steroid skeleton, expresses structural features of anabolic steroids (AS) contributing to the transport and steroid–receptor interaction. On the other hand, computational simulations of a candidate ligand binding to a receptor study (a “docking” procedure) predict the association of these AS with the human androgen receptor (AR). Fourteen compounds were identified as lead; the most potent was the 7α-methylestr-4-en-3, 17-dione. It was concluded that a good anabolic activity requires hydrogen bonding interactions between both Arg752 and Gln711 residues in the cycles A with O3 atom of the steroid and either Asn705 and Thr877 residues in the cycles D of steroid with O17 atom.
doi_str_mv 10.1016/j.jsbmb.2013.07.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1458186070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960076013001337</els_id><sourcerecordid>1458186070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-61bf4d62b5f9f6836e696126c35a305a917d84ea0972f799174e0debc2d5559f3</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVJaTZpf0Gh-JiL3ZFkS9YhhxDSJhDopT0LWRot2nqlRJID-ff1dpPm1sMwDPPmPeYj5DOFjgIVX3fdrkz7qWNAeQeyA-jfkQ0dpWopY3BCNqAEtCAFnJKzUnYAwDmVH8gp46NkYlAb8vsuVtxmU0OKTfLNHLYmuuZQpebF1iVjO5mCrnkKuS5mborNiDHEbeNTboLDWIMP9s0CjTtsTTRTmoNdjTCn4MpH8t6bueCnl35Ofn27-Xl9297_-H53fXXfWj6o2go6-d4JNg1eeTFygUIJysS6NRwGo6h0Y48GlGReqnXsERxOlrlhGJTn5-Ti6PuQ0-OCpep9KBbn2URMS9G0H0Y6CpCwSvlRanMqJaPXDznsTX7WFPSBst7pv5T1gbIGqVfK69WXl4Bl2qP7d_OKdRVcHgW4vvkUMOtiA0aLLmS0VbsU_hvwBwNBkEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1458186070</pqid></control><display><type>article</type><title>Integration of ligand and structure-based virtual screening for identification of leading anabolic steroids</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Alvarez-Ginarte, Yoanna María ; Montero-Cabrera, Luis Alberto ; García-de la Vega, José Manuel ; Bencomo-Martínez, Alberto ; Pupo, Amaury ; Agramonte-Delgado, Alina ; Marrero-Ponce, Yovani ; Ruiz-García, José Alberto ; Mikosch, Hans</creator><creatorcontrib>Alvarez-Ginarte, Yoanna María ; Montero-Cabrera, Luis Alberto ; García-de la Vega, José Manuel ; Bencomo-Martínez, Alberto ; Pupo, Amaury ; Agramonte-Delgado, Alina ; Marrero-Ponce, Yovani ; Ruiz-García, José Alberto ; Mikosch, Hans</creatorcontrib><description>•We apply a QSAR model and a docking study in a heterogeneous data set of 269 AS.•The QSAR model for the AS explains structural features of the steroidal backbone.•Docking procedure predict the association of AS with the human androgen receptor.•14 steroids were identified as lead; the best was 7α-methylestr-4-en-3,17-dione. Parallel ligand- and structure-based virtual screenings of 269 steroids with anabolic activity evaluated in vivo were performed. The quantitative structure–activity relationship (QSAR) model expressed by selected descriptors as the octanol–water partition coefficient, the molar volume and the quantum mechanical calculated charge values on atoms C1, C2, C5, C9, C10, C14 and C17 of the steroid skeleton, expresses structural features of anabolic steroids (AS) contributing to the transport and steroid–receptor interaction. On the other hand, computational simulations of a candidate ligand binding to a receptor study (a “docking” procedure) predict the association of these AS with the human androgen receptor (AR). Fourteen compounds were identified as lead; the most potent was the 7α-methylestr-4-en-3, 17-dione. It was concluded that a good anabolic activity requires hydrogen bonding interactions between both Arg752 and Gln711 residues in the cycles A with O3 atom of the steroid and either Asn705 and Thr877 residues in the cycles D of steroid with O17 atom.</description><identifier>ISSN: 0960-0760</identifier><identifier>EISSN: 1879-1220</identifier><identifier>DOI: 10.1016/j.jsbmb.2013.07.004</identifier><identifier>PMID: 23872659</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Anabolic Agents - chemistry ; Anabolic Agents - metabolism ; Anabolic steroids ; Cluster Analysis ; Humans ; QSAR and docking studies ; Quantitative Structure-Activity Relationship ; Quantum and physicochemical molecular descriptor ; Receptors, Androgen - chemistry ; Receptors, Androgen - metabolism ; Steroids - chemistry ; Steroids - metabolism ; Virtual screening</subject><ispartof>The Journal of steroid biochemistry and molecular biology, 2013-11, Vol.138, p.348-358</ispartof><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-61bf4d62b5f9f6836e696126c35a305a917d84ea0972f799174e0debc2d5559f3</citedby><cites>FETCH-LOGICAL-c359t-61bf4d62b5f9f6836e696126c35a305a917d84ea0972f799174e0debc2d5559f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960076013001337$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23872659$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alvarez-Ginarte, Yoanna María</creatorcontrib><creatorcontrib>Montero-Cabrera, Luis Alberto</creatorcontrib><creatorcontrib>García-de la Vega, José Manuel</creatorcontrib><creatorcontrib>Bencomo-Martínez, Alberto</creatorcontrib><creatorcontrib>Pupo, Amaury</creatorcontrib><creatorcontrib>Agramonte-Delgado, Alina</creatorcontrib><creatorcontrib>Marrero-Ponce, Yovani</creatorcontrib><creatorcontrib>Ruiz-García, José Alberto</creatorcontrib><creatorcontrib>Mikosch, Hans</creatorcontrib><title>Integration of ligand and structure-based virtual screening for identification of leading anabolic steroids</title><title>The Journal of steroid biochemistry and molecular biology</title><addtitle>J Steroid Biochem Mol Biol</addtitle><description>•We apply a QSAR model and a docking study in a heterogeneous data set of 269 AS.•The QSAR model for the AS explains structural features of the steroidal backbone.•Docking procedure predict the association of AS with the human androgen receptor.•14 steroids were identified as lead; the best was 7α-methylestr-4-en-3,17-dione. Parallel ligand- and structure-based virtual screenings of 269 steroids with anabolic activity evaluated in vivo were performed. The quantitative structure–activity relationship (QSAR) model expressed by selected descriptors as the octanol–water partition coefficient, the molar volume and the quantum mechanical calculated charge values on atoms C1, C2, C5, C9, C10, C14 and C17 of the steroid skeleton, expresses structural features of anabolic steroids (AS) contributing to the transport and steroid–receptor interaction. On the other hand, computational simulations of a candidate ligand binding to a receptor study (a “docking” procedure) predict the association of these AS with the human androgen receptor (AR). Fourteen compounds were identified as lead; the most potent was the 7α-methylestr-4-en-3, 17-dione. It was concluded that a good anabolic activity requires hydrogen bonding interactions between both Arg752 and Gln711 residues in the cycles A with O3 atom of the steroid and either Asn705 and Thr877 residues in the cycles D of steroid with O17 atom.</description><subject>Anabolic Agents - chemistry</subject><subject>Anabolic Agents - metabolism</subject><subject>Anabolic steroids</subject><subject>Cluster Analysis</subject><subject>Humans</subject><subject>QSAR and docking studies</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Quantum and physicochemical molecular descriptor</subject><subject>Receptors, Androgen - chemistry</subject><subject>Receptors, Androgen - metabolism</subject><subject>Steroids - chemistry</subject><subject>Steroids - metabolism</subject><subject>Virtual screening</subject><issn>0960-0760</issn><issn>1879-1220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFr3DAQhUVJaTZpf0Gh-JiL3ZFkS9YhhxDSJhDopT0LWRot2nqlRJID-ff1dpPm1sMwDPPmPeYj5DOFjgIVX3fdrkz7qWNAeQeyA-jfkQ0dpWopY3BCNqAEtCAFnJKzUnYAwDmVH8gp46NkYlAb8vsuVtxmU0OKTfLNHLYmuuZQpebF1iVjO5mCrnkKuS5mborNiDHEbeNTboLDWIMP9s0CjTtsTTRTmoNdjTCn4MpH8t6bueCnl35Ofn27-Xl9297_-H53fXXfWj6o2go6-d4JNg1eeTFygUIJysS6NRwGo6h0Y48GlGReqnXsERxOlrlhGJTn5-Ti6PuQ0-OCpep9KBbn2URMS9G0H0Y6CpCwSvlRanMqJaPXDznsTX7WFPSBst7pv5T1gbIGqVfK69WXl4Bl2qP7d_OKdRVcHgW4vvkUMOtiA0aLLmS0VbsU_hvwBwNBkEw</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Alvarez-Ginarte, Yoanna María</creator><creator>Montero-Cabrera, Luis Alberto</creator><creator>García-de la Vega, José Manuel</creator><creator>Bencomo-Martínez, Alberto</creator><creator>Pupo, Amaury</creator><creator>Agramonte-Delgado, Alina</creator><creator>Marrero-Ponce, Yovani</creator><creator>Ruiz-García, José Alberto</creator><creator>Mikosch, Hans</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20131101</creationdate><title>Integration of ligand and structure-based virtual screening for identification of leading anabolic steroids</title><author>Alvarez-Ginarte, Yoanna María ; Montero-Cabrera, Luis Alberto ; García-de la Vega, José Manuel ; Bencomo-Martínez, Alberto ; Pupo, Amaury ; Agramonte-Delgado, Alina ; Marrero-Ponce, Yovani ; Ruiz-García, José Alberto ; Mikosch, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-61bf4d62b5f9f6836e696126c35a305a917d84ea0972f799174e0debc2d5559f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anabolic Agents - chemistry</topic><topic>Anabolic Agents - metabolism</topic><topic>Anabolic steroids</topic><topic>Cluster Analysis</topic><topic>Humans</topic><topic>QSAR and docking studies</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Quantum and physicochemical molecular descriptor</topic><topic>Receptors, Androgen - chemistry</topic><topic>Receptors, Androgen - metabolism</topic><topic>Steroids - chemistry</topic><topic>Steroids - metabolism</topic><topic>Virtual screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alvarez-Ginarte, Yoanna María</creatorcontrib><creatorcontrib>Montero-Cabrera, Luis Alberto</creatorcontrib><creatorcontrib>García-de la Vega, José Manuel</creatorcontrib><creatorcontrib>Bencomo-Martínez, Alberto</creatorcontrib><creatorcontrib>Pupo, Amaury</creatorcontrib><creatorcontrib>Agramonte-Delgado, Alina</creatorcontrib><creatorcontrib>Marrero-Ponce, Yovani</creatorcontrib><creatorcontrib>Ruiz-García, José Alberto</creatorcontrib><creatorcontrib>Mikosch, Hans</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of steroid biochemistry and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alvarez-Ginarte, Yoanna María</au><au>Montero-Cabrera, Luis Alberto</au><au>García-de la Vega, José Manuel</au><au>Bencomo-Martínez, Alberto</au><au>Pupo, Amaury</au><au>Agramonte-Delgado, Alina</au><au>Marrero-Ponce, Yovani</au><au>Ruiz-García, José Alberto</au><au>Mikosch, Hans</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of ligand and structure-based virtual screening for identification of leading anabolic steroids</atitle><jtitle>The Journal of steroid biochemistry and molecular biology</jtitle><addtitle>J Steroid Biochem Mol Biol</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>138</volume><spage>348</spage><epage>358</epage><pages>348-358</pages><issn>0960-0760</issn><eissn>1879-1220</eissn><abstract>•We apply a QSAR model and a docking study in a heterogeneous data set of 269 AS.•The QSAR model for the AS explains structural features of the steroidal backbone.•Docking procedure predict the association of AS with the human androgen receptor.•14 steroids were identified as lead; the best was 7α-methylestr-4-en-3,17-dione. Parallel ligand- and structure-based virtual screenings of 269 steroids with anabolic activity evaluated in vivo were performed. The quantitative structure–activity relationship (QSAR) model expressed by selected descriptors as the octanol–water partition coefficient, the molar volume and the quantum mechanical calculated charge values on atoms C1, C2, C5, C9, C10, C14 and C17 of the steroid skeleton, expresses structural features of anabolic steroids (AS) contributing to the transport and steroid–receptor interaction. On the other hand, computational simulations of a candidate ligand binding to a receptor study (a “docking” procedure) predict the association of these AS with the human androgen receptor (AR). Fourteen compounds were identified as lead; the most potent was the 7α-methylestr-4-en-3, 17-dione. It was concluded that a good anabolic activity requires hydrogen bonding interactions between both Arg752 and Gln711 residues in the cycles A with O3 atom of the steroid and either Asn705 and Thr877 residues in the cycles D of steroid with O17 atom.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>23872659</pmid><doi>10.1016/j.jsbmb.2013.07.004</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-0760
ispartof The Journal of steroid biochemistry and molecular biology, 2013-11, Vol.138, p.348-358
issn 0960-0760
1879-1220
language eng
recordid cdi_proquest_miscellaneous_1458186070
source MEDLINE; Elsevier ScienceDirect Journals
subjects Anabolic Agents - chemistry
Anabolic Agents - metabolism
Anabolic steroids
Cluster Analysis
Humans
QSAR and docking studies
Quantitative Structure-Activity Relationship
Quantum and physicochemical molecular descriptor
Receptors, Androgen - chemistry
Receptors, Androgen - metabolism
Steroids - chemistry
Steroids - metabolism
Virtual screening
title Integration of ligand and structure-based virtual screening for identification of leading anabolic steroids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20ligand%20and%20structure-based%20virtual%20screening%20for%20identification%20of%20leading%20anabolic%20steroids&rft.jtitle=The%20Journal%20of%20steroid%20biochemistry%20and%20molecular%20biology&rft.au=Alvarez-Ginarte,%20Yoanna%20Mar%C3%ADa&rft.date=2013-11-01&rft.volume=138&rft.spage=348&rft.epage=358&rft.pages=348-358&rft.issn=0960-0760&rft.eissn=1879-1220&rft_id=info:doi/10.1016/j.jsbmb.2013.07.004&rft_dat=%3Cproquest_cross%3E1458186070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1458186070&rft_id=info:pmid/23872659&rft_els_id=S0960076013001337&rfr_iscdi=true