General radial diffusion model for heterogeneous sorbents
Sorption kinetics modeling can be improved by accounting for sorbent heterogeneity. This paper demonstrates how heterogeneity can be accommodated with a composite sorbent particle whose shape is described by a general radial geometry. Batch experiments involving sorption and desorption of anthracene...
Gespeichert in:
Veröffentlicht in: | Environmental toxicology and chemistry 1999-08, Vol.18 (8), p.1694-1700 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1700 |
---|---|
container_issue | 8 |
container_start_page | 1694 |
container_title | Environmental toxicology and chemistry |
container_volume | 18 |
creator | Heyse, Edward C. Mika, Daniel J. De Venoge, Thomas P. Coulliette, David L. McGowin, Audrey |
description | Sorption kinetics modeling can be improved by accounting for sorbent heterogeneity. This paper demonstrates how heterogeneity can be accommodated with a composite sorbent particle whose shape is described by a general radial geometry. Batch experiments involving sorption and desorption of anthracene from paraffin spheres are used to test the model. The performance of the model is also demonstrated with simulations based on Borden soil. Experiments and modeling demonstrated that sorption by a heterogeneous mix of sorbent particle sizes can be predicted better using a general composite radial geometry than as an equivalent sphere geometry. However, predicting the composite geometry (shape factor and radius) from sorption rate data is difficult due to the nonuniqueness of sorption rate curves that evolve from higher shape factor geometries. Use of models such as ours that better describe sorption sites at long diffusion path lengths may improve predictions when slow, long‐term desorption is an important factor. |
doi_str_mv | 10.1002/etc.5620180813 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_14518390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>14518390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3173-aed2169e7846f712dc9ab33775da4b67fe503c63ff986f421f8523d75202a50c3</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EEqWwMmdAbCl-xK8RVdCCqrKAGC3XuQZDmhQ7FfTfk5KKionpLt_5ztVB6JzgEcGYXkHrRlxQTBRWhB2gAeGc5koQdYgGWDKcSyrUMTpJ6Q1jIrTWA6QnUEO0VRZtGbpTBu_XKTR1tmxKqDLfxOwVWojNSwc265SlJi6gbtMpOvK2SnC2u0P0dHvzOJ7ms4fJ3fh6ljtGJMstlLTrAqkK4SWhpdN2wZiUvLTFQkgPHDMnmPdaCV9Q4hWnrJScYmo5dmyILnvvKjYfa0itWYbkoKrszz-GFJwopnEHjnrQxSalCN6sYljauDEEm-1CplvI7BfqAhc7s03OVj7a2oW0T2nChNh6dY99hgo2_0hNR_6pyPtsSC18_WZtfDdCMsnN83xixsV8fjuV94azb1WXhQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14518390</pqid></control><display><type>article</type><title>General radial diffusion model for heterogeneous sorbents</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Heyse, Edward C. ; Mika, Daniel J. ; De Venoge, Thomas P. ; Coulliette, David L. ; McGowin, Audrey</creator><creatorcontrib>Heyse, Edward C. ; Mika, Daniel J. ; De Venoge, Thomas P. ; Coulliette, David L. ; McGowin, Audrey</creatorcontrib><description>Sorption kinetics modeling can be improved by accounting for sorbent heterogeneity. This paper demonstrates how heterogeneity can be accommodated with a composite sorbent particle whose shape is described by a general radial geometry. Batch experiments involving sorption and desorption of anthracene from paraffin spheres are used to test the model. The performance of the model is also demonstrated with simulations based on Borden soil. Experiments and modeling demonstrated that sorption by a heterogeneous mix of sorbent particle sizes can be predicted better using a general composite radial geometry than as an equivalent sphere geometry. However, predicting the composite geometry (shape factor and radius) from sorption rate data is difficult due to the nonuniqueness of sorption rate curves that evolve from higher shape factor geometries. Use of models such as ours that better describe sorption sites at long diffusion path lengths may improve predictions when slow, long‐term desorption is an important factor.</description><identifier>ISSN: 0730-7268</identifier><identifier>EISSN: 1552-8618</identifier><identifier>DOI: 10.1002/etc.5620180813</identifier><identifier>CODEN: ETOCDK</identifier><language>eng</language><publisher>Hoboken: Wiley Periodicals, Inc</publisher><subject>Applied sciences ; Exact sciences and technology ; Groundwaters ; Heterogeneous sorbent ; Natural water pollution ; Pollution ; Radial diffusion ; Sorption ; Water treatment and pollution</subject><ispartof>Environmental toxicology and chemistry, 1999-08, Vol.18 (8), p.1694-1700</ispartof><rights>Copyright © 1999 SETAC</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3173-aed2169e7846f712dc9ab33775da4b67fe503c63ff986f421f8523d75202a50c3</citedby><cites>FETCH-LOGICAL-c3173-aed2169e7846f712dc9ab33775da4b67fe503c63ff986f421f8523d75202a50c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fetc.5620180813$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fetc.5620180813$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,1414,23913,23914,25123,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1913660$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Heyse, Edward C.</creatorcontrib><creatorcontrib>Mika, Daniel J.</creatorcontrib><creatorcontrib>De Venoge, Thomas P.</creatorcontrib><creatorcontrib>Coulliette, David L.</creatorcontrib><creatorcontrib>McGowin, Audrey</creatorcontrib><title>General radial diffusion model for heterogeneous sorbents</title><title>Environmental toxicology and chemistry</title><addtitle>Environmental Toxicology and Chemistry</addtitle><description>Sorption kinetics modeling can be improved by accounting for sorbent heterogeneity. This paper demonstrates how heterogeneity can be accommodated with a composite sorbent particle whose shape is described by a general radial geometry. Batch experiments involving sorption and desorption of anthracene from paraffin spheres are used to test the model. The performance of the model is also demonstrated with simulations based on Borden soil. Experiments and modeling demonstrated that sorption by a heterogeneous mix of sorbent particle sizes can be predicted better using a general composite radial geometry than as an equivalent sphere geometry. However, predicting the composite geometry (shape factor and radius) from sorption rate data is difficult due to the nonuniqueness of sorption rate curves that evolve from higher shape factor geometries. Use of models such as ours that better describe sorption sites at long diffusion path lengths may improve predictions when slow, long‐term desorption is an important factor.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Groundwaters</subject><subject>Heterogeneous sorbent</subject><subject>Natural water pollution</subject><subject>Pollution</subject><subject>Radial diffusion</subject><subject>Sorption</subject><subject>Water treatment and pollution</subject><issn>0730-7268</issn><issn>1552-8618</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EEqWwMmdAbCl-xK8RVdCCqrKAGC3XuQZDmhQ7FfTfk5KKionpLt_5ztVB6JzgEcGYXkHrRlxQTBRWhB2gAeGc5koQdYgGWDKcSyrUMTpJ6Q1jIrTWA6QnUEO0VRZtGbpTBu_XKTR1tmxKqDLfxOwVWojNSwc265SlJi6gbtMpOvK2SnC2u0P0dHvzOJ7ms4fJ3fh6ljtGJMstlLTrAqkK4SWhpdN2wZiUvLTFQkgPHDMnmPdaCV9Q4hWnrJScYmo5dmyILnvvKjYfa0itWYbkoKrszz-GFJwopnEHjnrQxSalCN6sYljauDEEm-1CplvI7BfqAhc7s03OVj7a2oW0T2nChNh6dY99hgo2_0hNR_6pyPtsSC18_WZtfDdCMsnN83xixsV8fjuV94azb1WXhQw</recordid><startdate>199908</startdate><enddate>199908</enddate><creator>Heyse, Edward C.</creator><creator>Mika, Daniel J.</creator><creator>De Venoge, Thomas P.</creator><creator>Coulliette, David L.</creator><creator>McGowin, Audrey</creator><general>Wiley Periodicals, Inc</general><general>SETAC</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>199908</creationdate><title>General radial diffusion model for heterogeneous sorbents</title><author>Heyse, Edward C. ; Mika, Daniel J. ; De Venoge, Thomas P. ; Coulliette, David L. ; McGowin, Audrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3173-aed2169e7846f712dc9ab33775da4b67fe503c63ff986f421f8523d75202a50c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Groundwaters</topic><topic>Heterogeneous sorbent</topic><topic>Natural water pollution</topic><topic>Pollution</topic><topic>Radial diffusion</topic><topic>Sorption</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heyse, Edward C.</creatorcontrib><creatorcontrib>Mika, Daniel J.</creatorcontrib><creatorcontrib>De Venoge, Thomas P.</creatorcontrib><creatorcontrib>Coulliette, David L.</creatorcontrib><creatorcontrib>McGowin, Audrey</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Environmental toxicology and chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heyse, Edward C.</au><au>Mika, Daniel J.</au><au>De Venoge, Thomas P.</au><au>Coulliette, David L.</au><au>McGowin, Audrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General radial diffusion model for heterogeneous sorbents</atitle><jtitle>Environmental toxicology and chemistry</jtitle><addtitle>Environmental Toxicology and Chemistry</addtitle><date>1999-08</date><risdate>1999</risdate><volume>18</volume><issue>8</issue><spage>1694</spage><epage>1700</epage><pages>1694-1700</pages><issn>0730-7268</issn><eissn>1552-8618</eissn><coden>ETOCDK</coden><abstract>Sorption kinetics modeling can be improved by accounting for sorbent heterogeneity. This paper demonstrates how heterogeneity can be accommodated with a composite sorbent particle whose shape is described by a general radial geometry. Batch experiments involving sorption and desorption of anthracene from paraffin spheres are used to test the model. The performance of the model is also demonstrated with simulations based on Borden soil. Experiments and modeling demonstrated that sorption by a heterogeneous mix of sorbent particle sizes can be predicted better using a general composite radial geometry than as an equivalent sphere geometry. However, predicting the composite geometry (shape factor and radius) from sorption rate data is difficult due to the nonuniqueness of sorption rate curves that evolve from higher shape factor geometries. Use of models such as ours that better describe sorption sites at long diffusion path lengths may improve predictions when slow, long‐term desorption is an important factor.</abstract><cop>Hoboken</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/etc.5620180813</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-7268 |
ispartof | Environmental toxicology and chemistry, 1999-08, Vol.18 (8), p.1694-1700 |
issn | 0730-7268 1552-8618 |
language | eng |
recordid | cdi_proquest_miscellaneous_14518390 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Exact sciences and technology Groundwaters Heterogeneous sorbent Natural water pollution Pollution Radial diffusion Sorption Water treatment and pollution |
title | General radial diffusion model for heterogeneous sorbents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A34%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20radial%20diffusion%20model%20for%20heterogeneous%20sorbents&rft.jtitle=Environmental%20toxicology%20and%20chemistry&rft.au=Heyse,%20Edward%20C.&rft.date=1999-08&rft.volume=18&rft.issue=8&rft.spage=1694&rft.epage=1700&rft.pages=1694-1700&rft.issn=0730-7268&rft.eissn=1552-8618&rft.coden=ETOCDK&rft_id=info:doi/10.1002/etc.5620180813&rft_dat=%3Cproquest_cross%3E14518390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14518390&rft_id=info:pmid/&rfr_iscdi=true |