Family of phenylacetyl-CoA monooxygenases differs in subunit organization from other monooxygenases

The phenylacetate degradation pathway is present in a wide range of microbes. A key component of this pathway is the four-subunit phenylacetyl-coenzyme A monooxygenase complex (PA-CoA MO, PaaACBE) that catalyzes the insertion of an oxygen in the aromatic ring of PA. This multicomponent enzyme repres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural biology 2013-11, Vol.184 (2), p.147-154
Hauptverfasser: Grishin, Andrey M., Ajamian, Eunice, Tao, Limei, Bostina, Mihnea, Zhang, Linhua, Trempe, Jean-Francois, Menard, Robert, Rouiller, Isabelle, Cygler, Miroslaw
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue 2
container_start_page 147
container_title Journal of structural biology
container_volume 184
creator Grishin, Andrey M.
Ajamian, Eunice
Tao, Limei
Bostina, Mihnea
Zhang, Linhua
Trempe, Jean-Francois
Menard, Robert
Rouiller, Isabelle
Cygler, Miroslaw
description The phenylacetate degradation pathway is present in a wide range of microbes. A key component of this pathway is the four-subunit phenylacetyl-coenzyme A monooxygenase complex (PA-CoA MO, PaaACBE) that catalyzes the insertion of an oxygen in the aromatic ring of PA. This multicomponent enzyme represents a new family of monooxygenases. We have previously determined the structure of the PaaAC subcomplex of catalytic (A) and structural (C) subunits and shown that PaaACB form a stable complex. The PaaB subunit is unrelated to the small subunits of homologous monooxygenases and its role and organization of the PaaACB complex is unknown. From low-resolution crystal structure, electron microscopy and small angle X-ray scattering we show that the PaaACB complex forms heterohexamers, with a homodimer of PaaB bridging two PaaAC heterodimers. Modeling the interactions of reductase subunit PaaE with PaaACB suggested that a unique and conserved ‘lysine bridge’ constellation near the Fe-binding site in the PaaA subunit (Lys68, Glu49, Glu72 and Asp126) may form part of the electron transfer path from PaaE to the iron center. The crystal structure of the PaaA(K68Q/E49Q)-PaaC is very similar to the wild-type enzyme structure, but when combined with the PaaE subunit the mutant showed 20–50 times reduced activity, supporting the functional importance of the ‘lysine bridge’.
doi_str_mv 10.1016/j.jsb.2013.09.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1450184840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047847713002426</els_id><sourcerecordid>1450184840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-9a4f1fd72a264d976c391fb2cbd90e8ffdbc5d08472454bf06b1411ecec74c393</originalsourceid><addsrcrecordid>eNp9kLtu3DAQRYnARvz8gDQBSzeSZyTqBVfGIo4NGEgT1wRFDm0uJHJNSkHkr48W66RI4WqmOPcC9zD2BSFHwPp6m29TnxeAZQ5dDlh8YqcIXZW1ddUc7X_RZK1omhN2ltIWAAQW-JmdFAKqqobulOk7Nbph4cHy3Qv5ZVCapmXINuGWj8GH8Ht5Jq8SJW6ctRQTd56nuZ-9m3iIz8q7NzW54LmNYeRheqH4X_KCHVs1JLp8v-fs6e7bz8199vjj-8Pm9jHTZVVOWaeERWuaQhW1MF1T67JD2xe6Nx1Qa63pdWVg3VOISvQW6h4FImnSjVjZ8pxdHXp3MbzOlCY5uqRpGJSnMCeJogJsRStgRfGA6hhSimTlLrpRxUUiyL1buZWrW7l3K6GTq9s18_W9fu5HMv8Sf2WuwM0BoHXkL0dRJu3IazIukp6kCe6D-j-bX4xf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1450184840</pqid></control><display><type>article</type><title>Family of phenylacetyl-CoA monooxygenases differs in subunit organization from other monooxygenases</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Grishin, Andrey M. ; Ajamian, Eunice ; Tao, Limei ; Bostina, Mihnea ; Zhang, Linhua ; Trempe, Jean-Francois ; Menard, Robert ; Rouiller, Isabelle ; Cygler, Miroslaw</creator><creatorcontrib>Grishin, Andrey M. ; Ajamian, Eunice ; Tao, Limei ; Bostina, Mihnea ; Zhang, Linhua ; Trempe, Jean-Francois ; Menard, Robert ; Rouiller, Isabelle ; Cygler, Miroslaw</creatorcontrib><description>The phenylacetate degradation pathway is present in a wide range of microbes. A key component of this pathway is the four-subunit phenylacetyl-coenzyme A monooxygenase complex (PA-CoA MO, PaaACBE) that catalyzes the insertion of an oxygen in the aromatic ring of PA. This multicomponent enzyme represents a new family of monooxygenases. We have previously determined the structure of the PaaAC subcomplex of catalytic (A) and structural (C) subunits and shown that PaaACB form a stable complex. The PaaB subunit is unrelated to the small subunits of homologous monooxygenases and its role and organization of the PaaACB complex is unknown. From low-resolution crystal structure, electron microscopy and small angle X-ray scattering we show that the PaaACB complex forms heterohexamers, with a homodimer of PaaB bridging two PaaAC heterodimers. Modeling the interactions of reductase subunit PaaE with PaaACB suggested that a unique and conserved ‘lysine bridge’ constellation near the Fe-binding site in the PaaA subunit (Lys68, Glu49, Glu72 and Asp126) may form part of the electron transfer path from PaaE to the iron center. The crystal structure of the PaaA(K68Q/E49Q)-PaaC is very similar to the wild-type enzyme structure, but when combined with the PaaE subunit the mutant showed 20–50 times reduced activity, supporting the functional importance of the ‘lysine bridge’.</description><identifier>ISSN: 1047-8477</identifier><identifier>EISSN: 1095-8657</identifier><identifier>DOI: 10.1016/j.jsb.2013.09.012</identifier><identifier>PMID: 24055609</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Substitution ; Aromatic compounds degradation ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - ultrastructure ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Klebsiella pneumoniae - enzymology ; Mixed Function Oxygenases - chemistry ; Mixed Function Oxygenases - genetics ; Mixed Function Oxygenases - ultrastructure ; Models, Molecular ; Monooxygenase ; Mutagenesis, Site-Directed ; Phenylacetate degradation pathway ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits - chemistry ; Quaternary structure ; Thiolester Hydrolases</subject><ispartof>Journal of structural biology, 2013-11, Vol.184 (2), p.147-154</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-9a4f1fd72a264d976c391fb2cbd90e8ffdbc5d08472454bf06b1411ecec74c393</citedby><cites>FETCH-LOGICAL-c353t-9a4f1fd72a264d976c391fb2cbd90e8ffdbc5d08472454bf06b1411ecec74c393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1047847713002426$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24055609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grishin, Andrey M.</creatorcontrib><creatorcontrib>Ajamian, Eunice</creatorcontrib><creatorcontrib>Tao, Limei</creatorcontrib><creatorcontrib>Bostina, Mihnea</creatorcontrib><creatorcontrib>Zhang, Linhua</creatorcontrib><creatorcontrib>Trempe, Jean-Francois</creatorcontrib><creatorcontrib>Menard, Robert</creatorcontrib><creatorcontrib>Rouiller, Isabelle</creatorcontrib><creatorcontrib>Cygler, Miroslaw</creatorcontrib><title>Family of phenylacetyl-CoA monooxygenases differs in subunit organization from other monooxygenases</title><title>Journal of structural biology</title><addtitle>J Struct Biol</addtitle><description>The phenylacetate degradation pathway is present in a wide range of microbes. A key component of this pathway is the four-subunit phenylacetyl-coenzyme A monooxygenase complex (PA-CoA MO, PaaACBE) that catalyzes the insertion of an oxygen in the aromatic ring of PA. This multicomponent enzyme represents a new family of monooxygenases. We have previously determined the structure of the PaaAC subcomplex of catalytic (A) and structural (C) subunits and shown that PaaACB form a stable complex. The PaaB subunit is unrelated to the small subunits of homologous monooxygenases and its role and organization of the PaaACB complex is unknown. From low-resolution crystal structure, electron microscopy and small angle X-ray scattering we show that the PaaACB complex forms heterohexamers, with a homodimer of PaaB bridging two PaaAC heterodimers. Modeling the interactions of reductase subunit PaaE with PaaACB suggested that a unique and conserved ‘lysine bridge’ constellation near the Fe-binding site in the PaaA subunit (Lys68, Glu49, Glu72 and Asp126) may form part of the electron transfer path from PaaE to the iron center. The crystal structure of the PaaA(K68Q/E49Q)-PaaC is very similar to the wild-type enzyme structure, but when combined with the PaaE subunit the mutant showed 20–50 times reduced activity, supporting the functional importance of the ‘lysine bridge’.</description><subject>Amino Acid Substitution</subject><subject>Aromatic compounds degradation</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - ultrastructure</subject><subject>Cryoelectron Microscopy</subject><subject>Crystallography, X-Ray</subject><subject>Klebsiella pneumoniae - enzymology</subject><subject>Mixed Function Oxygenases - chemistry</subject><subject>Mixed Function Oxygenases - genetics</subject><subject>Mixed Function Oxygenases - ultrastructure</subject><subject>Models, Molecular</subject><subject>Monooxygenase</subject><subject>Mutagenesis, Site-Directed</subject><subject>Phenylacetate degradation pathway</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Subunits - chemistry</subject><subject>Quaternary structure</subject><subject>Thiolester Hydrolases</subject><issn>1047-8477</issn><issn>1095-8657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtu3DAQRYnARvz8gDQBSzeSZyTqBVfGIo4NGEgT1wRFDm0uJHJNSkHkr48W66RI4WqmOPcC9zD2BSFHwPp6m29TnxeAZQ5dDlh8YqcIXZW1ddUc7X_RZK1omhN2ltIWAAQW-JmdFAKqqobulOk7Nbph4cHy3Qv5ZVCapmXINuGWj8GH8Ht5Jq8SJW6ctRQTd56nuZ-9m3iIz8q7NzW54LmNYeRheqH4X_KCHVs1JLp8v-fs6e7bz8199vjj-8Pm9jHTZVVOWaeERWuaQhW1MF1T67JD2xe6Nx1Qa63pdWVg3VOISvQW6h4FImnSjVjZ8pxdHXp3MbzOlCY5uqRpGJSnMCeJogJsRStgRfGA6hhSimTlLrpRxUUiyL1buZWrW7l3K6GTq9s18_W9fu5HMv8Sf2WuwM0BoHXkL0dRJu3IazIukp6kCe6D-j-bX4xf</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Grishin, Andrey M.</creator><creator>Ajamian, Eunice</creator><creator>Tao, Limei</creator><creator>Bostina, Mihnea</creator><creator>Zhang, Linhua</creator><creator>Trempe, Jean-Francois</creator><creator>Menard, Robert</creator><creator>Rouiller, Isabelle</creator><creator>Cygler, Miroslaw</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201311</creationdate><title>Family of phenylacetyl-CoA monooxygenases differs in subunit organization from other monooxygenases</title><author>Grishin, Andrey M. ; Ajamian, Eunice ; Tao, Limei ; Bostina, Mihnea ; Zhang, Linhua ; Trempe, Jean-Francois ; Menard, Robert ; Rouiller, Isabelle ; Cygler, Miroslaw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-9a4f1fd72a264d976c391fb2cbd90e8ffdbc5d08472454bf06b1411ecec74c393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Substitution</topic><topic>Aromatic compounds degradation</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - ultrastructure</topic><topic>Cryoelectron Microscopy</topic><topic>Crystallography, X-Ray</topic><topic>Klebsiella pneumoniae - enzymology</topic><topic>Mixed Function Oxygenases - chemistry</topic><topic>Mixed Function Oxygenases - genetics</topic><topic>Mixed Function Oxygenases - ultrastructure</topic><topic>Models, Molecular</topic><topic>Monooxygenase</topic><topic>Mutagenesis, Site-Directed</topic><topic>Phenylacetate degradation pathway</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Subunits - chemistry</topic><topic>Quaternary structure</topic><topic>Thiolester Hydrolases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grishin, Andrey M.</creatorcontrib><creatorcontrib>Ajamian, Eunice</creatorcontrib><creatorcontrib>Tao, Limei</creatorcontrib><creatorcontrib>Bostina, Mihnea</creatorcontrib><creatorcontrib>Zhang, Linhua</creatorcontrib><creatorcontrib>Trempe, Jean-Francois</creatorcontrib><creatorcontrib>Menard, Robert</creatorcontrib><creatorcontrib>Rouiller, Isabelle</creatorcontrib><creatorcontrib>Cygler, Miroslaw</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grishin, Andrey M.</au><au>Ajamian, Eunice</au><au>Tao, Limei</au><au>Bostina, Mihnea</au><au>Zhang, Linhua</au><au>Trempe, Jean-Francois</au><au>Menard, Robert</au><au>Rouiller, Isabelle</au><au>Cygler, Miroslaw</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Family of phenylacetyl-CoA monooxygenases differs in subunit organization from other monooxygenases</atitle><jtitle>Journal of structural biology</jtitle><addtitle>J Struct Biol</addtitle><date>2013-11</date><risdate>2013</risdate><volume>184</volume><issue>2</issue><spage>147</spage><epage>154</epage><pages>147-154</pages><issn>1047-8477</issn><eissn>1095-8657</eissn><abstract>The phenylacetate degradation pathway is present in a wide range of microbes. A key component of this pathway is the four-subunit phenylacetyl-coenzyme A monooxygenase complex (PA-CoA MO, PaaACBE) that catalyzes the insertion of an oxygen in the aromatic ring of PA. This multicomponent enzyme represents a new family of monooxygenases. We have previously determined the structure of the PaaAC subcomplex of catalytic (A) and structural (C) subunits and shown that PaaACB form a stable complex. The PaaB subunit is unrelated to the small subunits of homologous monooxygenases and its role and organization of the PaaACB complex is unknown. From low-resolution crystal structure, electron microscopy and small angle X-ray scattering we show that the PaaACB complex forms heterohexamers, with a homodimer of PaaB bridging two PaaAC heterodimers. Modeling the interactions of reductase subunit PaaE with PaaACB suggested that a unique and conserved ‘lysine bridge’ constellation near the Fe-binding site in the PaaA subunit (Lys68, Glu49, Glu72 and Asp126) may form part of the electron transfer path from PaaE to the iron center. The crystal structure of the PaaA(K68Q/E49Q)-PaaC is very similar to the wild-type enzyme structure, but when combined with the PaaE subunit the mutant showed 20–50 times reduced activity, supporting the functional importance of the ‘lysine bridge’.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24055609</pmid><doi>10.1016/j.jsb.2013.09.012</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1047-8477
ispartof Journal of structural biology, 2013-11, Vol.184 (2), p.147-154
issn 1047-8477
1095-8657
language eng
recordid cdi_proquest_miscellaneous_1450184840
source MEDLINE; Elsevier ScienceDirect Journals
subjects Amino Acid Substitution
Aromatic compounds degradation
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - ultrastructure
Cryoelectron Microscopy
Crystallography, X-Ray
Klebsiella pneumoniae - enzymology
Mixed Function Oxygenases - chemistry
Mixed Function Oxygenases - genetics
Mixed Function Oxygenases - ultrastructure
Models, Molecular
Monooxygenase
Mutagenesis, Site-Directed
Phenylacetate degradation pathway
Protein Structure, Quaternary
Protein Structure, Secondary
Protein Structure, Tertiary
Protein Subunits - chemistry
Quaternary structure
Thiolester Hydrolases
title Family of phenylacetyl-CoA monooxygenases differs in subunit organization from other monooxygenases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T11%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Family%20of%20phenylacetyl-CoA%20monooxygenases%20differs%20in%20subunit%20organization%20from%20other%20monooxygenases&rft.jtitle=Journal%20of%20structural%20biology&rft.au=Grishin,%20Andrey%20M.&rft.date=2013-11&rft.volume=184&rft.issue=2&rft.spage=147&rft.epage=154&rft.pages=147-154&rft.issn=1047-8477&rft.eissn=1095-8657&rft_id=info:doi/10.1016/j.jsb.2013.09.012&rft_dat=%3Cproquest_cross%3E1450184840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1450184840&rft_id=info:pmid/24055609&rft_els_id=S1047847713002426&rfr_iscdi=true