Family of phenylacetyl-CoA monooxygenases differs in subunit organization from other monooxygenases
The phenylacetate degradation pathway is present in a wide range of microbes. A key component of this pathway is the four-subunit phenylacetyl-coenzyme A monooxygenase complex (PA-CoA MO, PaaACBE) that catalyzes the insertion of an oxygen in the aromatic ring of PA. This multicomponent enzyme repres...
Gespeichert in:
Veröffentlicht in: | Journal of structural biology 2013-11, Vol.184 (2), p.147-154 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154 |
---|---|
container_issue | 2 |
container_start_page | 147 |
container_title | Journal of structural biology |
container_volume | 184 |
creator | Grishin, Andrey M. Ajamian, Eunice Tao, Limei Bostina, Mihnea Zhang, Linhua Trempe, Jean-Francois Menard, Robert Rouiller, Isabelle Cygler, Miroslaw |
description | The phenylacetate degradation pathway is present in a wide range of microbes. A key component of this pathway is the four-subunit phenylacetyl-coenzyme A monooxygenase complex (PA-CoA MO, PaaACBE) that catalyzes the insertion of an oxygen in the aromatic ring of PA. This multicomponent enzyme represents a new family of monooxygenases. We have previously determined the structure of the PaaAC subcomplex of catalytic (A) and structural (C) subunits and shown that PaaACB form a stable complex. The PaaB subunit is unrelated to the small subunits of homologous monooxygenases and its role and organization of the PaaACB complex is unknown. From low-resolution crystal structure, electron microscopy and small angle X-ray scattering we show that the PaaACB complex forms heterohexamers, with a homodimer of PaaB bridging two PaaAC heterodimers. Modeling the interactions of reductase subunit PaaE with PaaACB suggested that a unique and conserved ‘lysine bridge’ constellation near the Fe-binding site in the PaaA subunit (Lys68, Glu49, Glu72 and Asp126) may form part of the electron transfer path from PaaE to the iron center. The crystal structure of the PaaA(K68Q/E49Q)-PaaC is very similar to the wild-type enzyme structure, but when combined with the PaaE subunit the mutant showed 20–50 times reduced activity, supporting the functional importance of the ‘lysine bridge’. |
doi_str_mv | 10.1016/j.jsb.2013.09.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1450184840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1047847713002426</els_id><sourcerecordid>1450184840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-9a4f1fd72a264d976c391fb2cbd90e8ffdbc5d08472454bf06b1411ecec74c393</originalsourceid><addsrcrecordid>eNp9kLtu3DAQRYnARvz8gDQBSzeSZyTqBVfGIo4NGEgT1wRFDm0uJHJNSkHkr48W66RI4WqmOPcC9zD2BSFHwPp6m29TnxeAZQ5dDlh8YqcIXZW1ddUc7X_RZK1omhN2ltIWAAQW-JmdFAKqqobulOk7Nbph4cHy3Qv5ZVCapmXINuGWj8GH8Ht5Jq8SJW6ctRQTd56nuZ-9m3iIz8q7NzW54LmNYeRheqH4X_KCHVs1JLp8v-fs6e7bz8199vjj-8Pm9jHTZVVOWaeERWuaQhW1MF1T67JD2xe6Nx1Qa63pdWVg3VOISvQW6h4FImnSjVjZ8pxdHXp3MbzOlCY5uqRpGJSnMCeJogJsRStgRfGA6hhSimTlLrpRxUUiyL1buZWrW7l3K6GTq9s18_W9fu5HMv8Sf2WuwM0BoHXkL0dRJu3IazIukp6kCe6D-j-bX4xf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1450184840</pqid></control><display><type>article</type><title>Family of phenylacetyl-CoA monooxygenases differs in subunit organization from other monooxygenases</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Grishin, Andrey M. ; Ajamian, Eunice ; Tao, Limei ; Bostina, Mihnea ; Zhang, Linhua ; Trempe, Jean-Francois ; Menard, Robert ; Rouiller, Isabelle ; Cygler, Miroslaw</creator><creatorcontrib>Grishin, Andrey M. ; Ajamian, Eunice ; Tao, Limei ; Bostina, Mihnea ; Zhang, Linhua ; Trempe, Jean-Francois ; Menard, Robert ; Rouiller, Isabelle ; Cygler, Miroslaw</creatorcontrib><description>The phenylacetate degradation pathway is present in a wide range of microbes. A key component of this pathway is the four-subunit phenylacetyl-coenzyme A monooxygenase complex (PA-CoA MO, PaaACBE) that catalyzes the insertion of an oxygen in the aromatic ring of PA. This multicomponent enzyme represents a new family of monooxygenases. We have previously determined the structure of the PaaAC subcomplex of catalytic (A) and structural (C) subunits and shown that PaaACB form a stable complex. The PaaB subunit is unrelated to the small subunits of homologous monooxygenases and its role and organization of the PaaACB complex is unknown. From low-resolution crystal structure, electron microscopy and small angle X-ray scattering we show that the PaaACB complex forms heterohexamers, with a homodimer of PaaB bridging two PaaAC heterodimers. Modeling the interactions of reductase subunit PaaE with PaaACB suggested that a unique and conserved ‘lysine bridge’ constellation near the Fe-binding site in the PaaA subunit (Lys68, Glu49, Glu72 and Asp126) may form part of the electron transfer path from PaaE to the iron center. The crystal structure of the PaaA(K68Q/E49Q)-PaaC is very similar to the wild-type enzyme structure, but when combined with the PaaE subunit the mutant showed 20–50 times reduced activity, supporting the functional importance of the ‘lysine bridge’.</description><identifier>ISSN: 1047-8477</identifier><identifier>EISSN: 1095-8657</identifier><identifier>DOI: 10.1016/j.jsb.2013.09.012</identifier><identifier>PMID: 24055609</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Substitution ; Aromatic compounds degradation ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - ultrastructure ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Klebsiella pneumoniae - enzymology ; Mixed Function Oxygenases - chemistry ; Mixed Function Oxygenases - genetics ; Mixed Function Oxygenases - ultrastructure ; Models, Molecular ; Monooxygenase ; Mutagenesis, Site-Directed ; Phenylacetate degradation pathway ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protein Subunits - chemistry ; Quaternary structure ; Thiolester Hydrolases</subject><ispartof>Journal of structural biology, 2013-11, Vol.184 (2), p.147-154</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-9a4f1fd72a264d976c391fb2cbd90e8ffdbc5d08472454bf06b1411ecec74c393</citedby><cites>FETCH-LOGICAL-c353t-9a4f1fd72a264d976c391fb2cbd90e8ffdbc5d08472454bf06b1411ecec74c393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1047847713002426$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24055609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grishin, Andrey M.</creatorcontrib><creatorcontrib>Ajamian, Eunice</creatorcontrib><creatorcontrib>Tao, Limei</creatorcontrib><creatorcontrib>Bostina, Mihnea</creatorcontrib><creatorcontrib>Zhang, Linhua</creatorcontrib><creatorcontrib>Trempe, Jean-Francois</creatorcontrib><creatorcontrib>Menard, Robert</creatorcontrib><creatorcontrib>Rouiller, Isabelle</creatorcontrib><creatorcontrib>Cygler, Miroslaw</creatorcontrib><title>Family of phenylacetyl-CoA monooxygenases differs in subunit organization from other monooxygenases</title><title>Journal of structural biology</title><addtitle>J Struct Biol</addtitle><description>The phenylacetate degradation pathway is present in a wide range of microbes. A key component of this pathway is the four-subunit phenylacetyl-coenzyme A monooxygenase complex (PA-CoA MO, PaaACBE) that catalyzes the insertion of an oxygen in the aromatic ring of PA. This multicomponent enzyme represents a new family of monooxygenases. We have previously determined the structure of the PaaAC subcomplex of catalytic (A) and structural (C) subunits and shown that PaaACB form a stable complex. The PaaB subunit is unrelated to the small subunits of homologous monooxygenases and its role and organization of the PaaACB complex is unknown. From low-resolution crystal structure, electron microscopy and small angle X-ray scattering we show that the PaaACB complex forms heterohexamers, with a homodimer of PaaB bridging two PaaAC heterodimers. Modeling the interactions of reductase subunit PaaE with PaaACB suggested that a unique and conserved ‘lysine bridge’ constellation near the Fe-binding site in the PaaA subunit (Lys68, Glu49, Glu72 and Asp126) may form part of the electron transfer path from PaaE to the iron center. The crystal structure of the PaaA(K68Q/E49Q)-PaaC is very similar to the wild-type enzyme structure, but when combined with the PaaE subunit the mutant showed 20–50 times reduced activity, supporting the functional importance of the ‘lysine bridge’.</description><subject>Amino Acid Substitution</subject><subject>Aromatic compounds degradation</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - ultrastructure</subject><subject>Cryoelectron Microscopy</subject><subject>Crystallography, X-Ray</subject><subject>Klebsiella pneumoniae - enzymology</subject><subject>Mixed Function Oxygenases - chemistry</subject><subject>Mixed Function Oxygenases - genetics</subject><subject>Mixed Function Oxygenases - ultrastructure</subject><subject>Models, Molecular</subject><subject>Monooxygenase</subject><subject>Mutagenesis, Site-Directed</subject><subject>Phenylacetate degradation pathway</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Subunits - chemistry</subject><subject>Quaternary structure</subject><subject>Thiolester Hydrolases</subject><issn>1047-8477</issn><issn>1095-8657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLtu3DAQRYnARvz8gDQBSzeSZyTqBVfGIo4NGEgT1wRFDm0uJHJNSkHkr48W66RI4WqmOPcC9zD2BSFHwPp6m29TnxeAZQ5dDlh8YqcIXZW1ddUc7X_RZK1omhN2ltIWAAQW-JmdFAKqqobulOk7Nbph4cHy3Qv5ZVCapmXINuGWj8GH8Ht5Jq8SJW6ctRQTd56nuZ-9m3iIz8q7NzW54LmNYeRheqH4X_KCHVs1JLp8v-fs6e7bz8199vjj-8Pm9jHTZVVOWaeERWuaQhW1MF1T67JD2xe6Nx1Qa63pdWVg3VOISvQW6h4FImnSjVjZ8pxdHXp3MbzOlCY5uqRpGJSnMCeJogJsRStgRfGA6hhSimTlLrpRxUUiyL1buZWrW7l3K6GTq9s18_W9fu5HMv8Sf2WuwM0BoHXkL0dRJu3IazIukp6kCe6D-j-bX4xf</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Grishin, Andrey M.</creator><creator>Ajamian, Eunice</creator><creator>Tao, Limei</creator><creator>Bostina, Mihnea</creator><creator>Zhang, Linhua</creator><creator>Trempe, Jean-Francois</creator><creator>Menard, Robert</creator><creator>Rouiller, Isabelle</creator><creator>Cygler, Miroslaw</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201311</creationdate><title>Family of phenylacetyl-CoA monooxygenases differs in subunit organization from other monooxygenases</title><author>Grishin, Andrey M. ; Ajamian, Eunice ; Tao, Limei ; Bostina, Mihnea ; Zhang, Linhua ; Trempe, Jean-Francois ; Menard, Robert ; Rouiller, Isabelle ; Cygler, Miroslaw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-9a4f1fd72a264d976c391fb2cbd90e8ffdbc5d08472454bf06b1411ecec74c393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Substitution</topic><topic>Aromatic compounds degradation</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - ultrastructure</topic><topic>Cryoelectron Microscopy</topic><topic>Crystallography, X-Ray</topic><topic>Klebsiella pneumoniae - enzymology</topic><topic>Mixed Function Oxygenases - chemistry</topic><topic>Mixed Function Oxygenases - genetics</topic><topic>Mixed Function Oxygenases - ultrastructure</topic><topic>Models, Molecular</topic><topic>Monooxygenase</topic><topic>Mutagenesis, Site-Directed</topic><topic>Phenylacetate degradation pathway</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Subunits - chemistry</topic><topic>Quaternary structure</topic><topic>Thiolester Hydrolases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grishin, Andrey M.</creatorcontrib><creatorcontrib>Ajamian, Eunice</creatorcontrib><creatorcontrib>Tao, Limei</creatorcontrib><creatorcontrib>Bostina, Mihnea</creatorcontrib><creatorcontrib>Zhang, Linhua</creatorcontrib><creatorcontrib>Trempe, Jean-Francois</creatorcontrib><creatorcontrib>Menard, Robert</creatorcontrib><creatorcontrib>Rouiller, Isabelle</creatorcontrib><creatorcontrib>Cygler, Miroslaw</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of structural biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grishin, Andrey M.</au><au>Ajamian, Eunice</au><au>Tao, Limei</au><au>Bostina, Mihnea</au><au>Zhang, Linhua</au><au>Trempe, Jean-Francois</au><au>Menard, Robert</au><au>Rouiller, Isabelle</au><au>Cygler, Miroslaw</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Family of phenylacetyl-CoA monooxygenases differs in subunit organization from other monooxygenases</atitle><jtitle>Journal of structural biology</jtitle><addtitle>J Struct Biol</addtitle><date>2013-11</date><risdate>2013</risdate><volume>184</volume><issue>2</issue><spage>147</spage><epage>154</epage><pages>147-154</pages><issn>1047-8477</issn><eissn>1095-8657</eissn><abstract>The phenylacetate degradation pathway is present in a wide range of microbes. A key component of this pathway is the four-subunit phenylacetyl-coenzyme A monooxygenase complex (PA-CoA MO, PaaACBE) that catalyzes the insertion of an oxygen in the aromatic ring of PA. This multicomponent enzyme represents a new family of monooxygenases. We have previously determined the structure of the PaaAC subcomplex of catalytic (A) and structural (C) subunits and shown that PaaACB form a stable complex. The PaaB subunit is unrelated to the small subunits of homologous monooxygenases and its role and organization of the PaaACB complex is unknown. From low-resolution crystal structure, electron microscopy and small angle X-ray scattering we show that the PaaACB complex forms heterohexamers, with a homodimer of PaaB bridging two PaaAC heterodimers. Modeling the interactions of reductase subunit PaaE with PaaACB suggested that a unique and conserved ‘lysine bridge’ constellation near the Fe-binding site in the PaaA subunit (Lys68, Glu49, Glu72 and Asp126) may form part of the electron transfer path from PaaE to the iron center. The crystal structure of the PaaA(K68Q/E49Q)-PaaC is very similar to the wild-type enzyme structure, but when combined with the PaaE subunit the mutant showed 20–50 times reduced activity, supporting the functional importance of the ‘lysine bridge’.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24055609</pmid><doi>10.1016/j.jsb.2013.09.012</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-8477 |
ispartof | Journal of structural biology, 2013-11, Vol.184 (2), p.147-154 |
issn | 1047-8477 1095-8657 |
language | eng |
recordid | cdi_proquest_miscellaneous_1450184840 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Amino Acid Substitution Aromatic compounds degradation Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - ultrastructure Cryoelectron Microscopy Crystallography, X-Ray Klebsiella pneumoniae - enzymology Mixed Function Oxygenases - chemistry Mixed Function Oxygenases - genetics Mixed Function Oxygenases - ultrastructure Models, Molecular Monooxygenase Mutagenesis, Site-Directed Phenylacetate degradation pathway Protein Structure, Quaternary Protein Structure, Secondary Protein Structure, Tertiary Protein Subunits - chemistry Quaternary structure Thiolester Hydrolases |
title | Family of phenylacetyl-CoA monooxygenases differs in subunit organization from other monooxygenases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T11%3A44%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Family%20of%20phenylacetyl-CoA%20monooxygenases%20differs%20in%20subunit%20organization%20from%20other%20monooxygenases&rft.jtitle=Journal%20of%20structural%20biology&rft.au=Grishin,%20Andrey%20M.&rft.date=2013-11&rft.volume=184&rft.issue=2&rft.spage=147&rft.epage=154&rft.pages=147-154&rft.issn=1047-8477&rft.eissn=1095-8657&rft_id=info:doi/10.1016/j.jsb.2013.09.012&rft_dat=%3Cproquest_cross%3E1450184840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1450184840&rft_id=info:pmid/24055609&rft_els_id=S1047847713002426&rfr_iscdi=true |