Determinants of robustness in spindle assembly checkpoint signalling

The spindle assembly checkpoint is a conserved signalling pathway that protects genome integrity. Given its central importance, this checkpoint should withstand stochastic fluctuations and environmental perturbations, but the extent of and mechanisms underlying its robustness remain unknown. We prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2013-11, Vol.15 (11), p.1328-1339
Hauptverfasser: Heinrich, Stephanie, Geissen, Eva-Maria, Kamenz, Julia, Trautmann, Susanne, Widmer, Christian, Drewe, Philipp, Knop, Michael, Radde, Nicole, Hasenauer, Jan, Hauf, Silke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1339
container_issue 11
container_start_page 1328
container_title Nature cell biology
container_volume 15
creator Heinrich, Stephanie
Geissen, Eva-Maria
Kamenz, Julia
Trautmann, Susanne
Widmer, Christian
Drewe, Philipp
Knop, Michael
Radde, Nicole
Hasenauer, Jan
Hauf, Silke
description The spindle assembly checkpoint is a conserved signalling pathway that protects genome integrity. Given its central importance, this checkpoint should withstand stochastic fluctuations and environmental perturbations, but the extent of and mechanisms underlying its robustness remain unknown. We probed spindle assembly checkpoint signalling by modulating checkpoint protein abundance and nutrient conditions in fission yeast. For core checkpoint proteins, a mere 20% reduction can suffice to impair signalling, revealing a surprising fragility. Quantification of protein abundance in single cells showed little variability (noise) of critical proteins, explaining why the checkpoint normally functions reliably. Checkpoint-mediated stoichiometric inhibition of the anaphase activator Cdc20 (Slp1 in Schizosaccharomyces pombe ) can account for the tolerance towards small fluctuations in protein abundance and explains our observation that some perturbations lead to non-genetic variation in the checkpoint response. Our work highlights low gene expression noise as an important determinant of reliable checkpoint signalling. Hauf and colleagues modulate the amount of spindle assembly checkpoint (SAC) proteins in fission yeast, revealing that a small reduction can cause checkpoint errors. However, levels of critical proteins normally show little variation, which explains the robustness of the SAC.
doi_str_mv 10.1038/ncb2864
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1449276111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A351788791</galeid><sourcerecordid>A351788791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-a1887d854b56f517b8a0a44b86c1c92f127a08c71e1269abc07aba3b7f30f943</originalsourceid><addsrcrecordid>eNptkVFvFSEQhYnR2FqN_8Bs4oP2YSssXGAfm1ZrkyYm2ncC3GGl7sKV2U3afy_XXq23MTxAhm9Ozswh5DWjJ4xy_SF512kpnpBDJpRshVT90-1brlrF--6AvEC8oZQJQdVzctAJJlnP-SE5P4cZyhSTTTM2OTQluwXnBIhNTA1uYlqP0FhEmNx41_jv4H9sckxzg3FIdhxjGl6SZ8GOCK929xG5_vTx-uxze_Xl4vLs9Kr1QvC5tUxrtdYr4VYyrJhy2lIrhNPSM993gXXKUu0VA9bJ3jpPlXWWOxU4Db3gR-T9veym5J8L4GymiB7G0SbIC5o6Xd8pyRir6NtH6E1eSrX7m9KiLk3KB2qwI5iYQp6L9VtRc8qrwWq332qd_IeqZw1T9DlBiLW-13C811CZGW7nwS6I5vLb13323T3rS0YsEMymxMmWO8Oo2UZrdtFW8s1upMVNsP7L_cnyYT1Yv9IA5Z-ZH2n9AvPPqK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448410366</pqid></control><display><type>article</type><title>Determinants of robustness in spindle assembly checkpoint signalling</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Heinrich, Stephanie ; Geissen, Eva-Maria ; Kamenz, Julia ; Trautmann, Susanne ; Widmer, Christian ; Drewe, Philipp ; Knop, Michael ; Radde, Nicole ; Hasenauer, Jan ; Hauf, Silke</creator><creatorcontrib>Heinrich, Stephanie ; Geissen, Eva-Maria ; Kamenz, Julia ; Trautmann, Susanne ; Widmer, Christian ; Drewe, Philipp ; Knop, Michael ; Radde, Nicole ; Hasenauer, Jan ; Hauf, Silke</creatorcontrib><description>The spindle assembly checkpoint is a conserved signalling pathway that protects genome integrity. Given its central importance, this checkpoint should withstand stochastic fluctuations and environmental perturbations, but the extent of and mechanisms underlying its robustness remain unknown. We probed spindle assembly checkpoint signalling by modulating checkpoint protein abundance and nutrient conditions in fission yeast. For core checkpoint proteins, a mere 20% reduction can suffice to impair signalling, revealing a surprising fragility. Quantification of protein abundance in single cells showed little variability (noise) of critical proteins, explaining why the checkpoint normally functions reliably. Checkpoint-mediated stoichiometric inhibition of the anaphase activator Cdc20 (Slp1 in Schizosaccharomyces pombe ) can account for the tolerance towards small fluctuations in protein abundance and explains our observation that some perturbations lead to non-genetic variation in the checkpoint response. Our work highlights low gene expression noise as an important determinant of reliable checkpoint signalling. Hauf and colleagues modulate the amount of spindle assembly checkpoint (SAC) proteins in fission yeast, revealing that a small reduction can cause checkpoint errors. However, levels of critical proteins normally show little variation, which explains the robustness of the SAC.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb2864</identifier><identifier>PMID: 24161933</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/80/641/1655 ; 631/80/641/2002 ; 631/80/641/2187 ; Biology ; Cancer Research ; Cell Biology ; Cellular signal transduction ; Developmental Biology ; Fluctuations ; Gene expression ; Genetic aspects ; Genetic diversity ; Genomes ; Life Sciences ; M Phase Cell Cycle Checkpoints ; Nutrients ; Proteins ; Schizosaccharomyces - metabolism ; Schizosaccharomyces pombe Proteins - metabolism ; Signal Transduction ; Spindle (Cell division) ; Spindle Apparatus ; Stem Cells ; System theory ; Testing ; Yeast ; Yeasts</subject><ispartof>Nature cell biology, 2013-11, Vol.15 (11), p.1328-1339</ispartof><rights>Springer Nature Limited 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-a1887d854b56f517b8a0a44b86c1c92f127a08c71e1269abc07aba3b7f30f943</citedby><cites>FETCH-LOGICAL-c443t-a1887d854b56f517b8a0a44b86c1c92f127a08c71e1269abc07aba3b7f30f943</cites><orcidid>0000-0001-5938-721X ; 000000015938721X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncb2864$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/ncb2864$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24161933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heinrich, Stephanie</creatorcontrib><creatorcontrib>Geissen, Eva-Maria</creatorcontrib><creatorcontrib>Kamenz, Julia</creatorcontrib><creatorcontrib>Trautmann, Susanne</creatorcontrib><creatorcontrib>Widmer, Christian</creatorcontrib><creatorcontrib>Drewe, Philipp</creatorcontrib><creatorcontrib>Knop, Michael</creatorcontrib><creatorcontrib>Radde, Nicole</creatorcontrib><creatorcontrib>Hasenauer, Jan</creatorcontrib><creatorcontrib>Hauf, Silke</creatorcontrib><title>Determinants of robustness in spindle assembly checkpoint signalling</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>The spindle assembly checkpoint is a conserved signalling pathway that protects genome integrity. Given its central importance, this checkpoint should withstand stochastic fluctuations and environmental perturbations, but the extent of and mechanisms underlying its robustness remain unknown. We probed spindle assembly checkpoint signalling by modulating checkpoint protein abundance and nutrient conditions in fission yeast. For core checkpoint proteins, a mere 20% reduction can suffice to impair signalling, revealing a surprising fragility. Quantification of protein abundance in single cells showed little variability (noise) of critical proteins, explaining why the checkpoint normally functions reliably. Checkpoint-mediated stoichiometric inhibition of the anaphase activator Cdc20 (Slp1 in Schizosaccharomyces pombe ) can account for the tolerance towards small fluctuations in protein abundance and explains our observation that some perturbations lead to non-genetic variation in the checkpoint response. Our work highlights low gene expression noise as an important determinant of reliable checkpoint signalling. Hauf and colleagues modulate the amount of spindle assembly checkpoint (SAC) proteins in fission yeast, revealing that a small reduction can cause checkpoint errors. However, levels of critical proteins normally show little variation, which explains the robustness of the SAC.</description><subject>631/80/641/1655</subject><subject>631/80/641/2002</subject><subject>631/80/641/2187</subject><subject>Biology</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cellular signal transduction</subject><subject>Developmental Biology</subject><subject>Fluctuations</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genomes</subject><subject>Life Sciences</subject><subject>M Phase Cell Cycle Checkpoints</subject><subject>Nutrients</subject><subject>Proteins</subject><subject>Schizosaccharomyces - metabolism</subject><subject>Schizosaccharomyces pombe Proteins - metabolism</subject><subject>Signal Transduction</subject><subject>Spindle (Cell division)</subject><subject>Spindle Apparatus</subject><subject>Stem Cells</subject><subject>System theory</subject><subject>Testing</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkVFvFSEQhYnR2FqN_8Bs4oP2YSssXGAfm1ZrkyYm2ncC3GGl7sKV2U3afy_XXq23MTxAhm9Ozswh5DWjJ4xy_SF512kpnpBDJpRshVT90-1brlrF--6AvEC8oZQJQdVzctAJJlnP-SE5P4cZyhSTTTM2OTQluwXnBIhNTA1uYlqP0FhEmNx41_jv4H9sckxzg3FIdhxjGl6SZ8GOCK929xG5_vTx-uxze_Xl4vLs9Kr1QvC5tUxrtdYr4VYyrJhy2lIrhNPSM993gXXKUu0VA9bJ3jpPlXWWOxU4Db3gR-T9veym5J8L4GymiB7G0SbIC5o6Xd8pyRir6NtH6E1eSrX7m9KiLk3KB2qwI5iYQp6L9VtRc8qrwWq332qd_IeqZw1T9DlBiLW-13C811CZGW7nwS6I5vLb13323T3rS0YsEMymxMmWO8Oo2UZrdtFW8s1upMVNsP7L_cnyYT1Yv9IA5Z-ZH2n9AvPPqK8</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Heinrich, Stephanie</creator><creator>Geissen, Eva-Maria</creator><creator>Kamenz, Julia</creator><creator>Trautmann, Susanne</creator><creator>Widmer, Christian</creator><creator>Drewe, Philipp</creator><creator>Knop, Michael</creator><creator>Radde, Nicole</creator><creator>Hasenauer, Jan</creator><creator>Hauf, Silke</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5938-721X</orcidid><orcidid>https://orcid.org/000000015938721X</orcidid></search><sort><creationdate>20131101</creationdate><title>Determinants of robustness in spindle assembly checkpoint signalling</title><author>Heinrich, Stephanie ; Geissen, Eva-Maria ; Kamenz, Julia ; Trautmann, Susanne ; Widmer, Christian ; Drewe, Philipp ; Knop, Michael ; Radde, Nicole ; Hasenauer, Jan ; Hauf, Silke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-a1887d854b56f517b8a0a44b86c1c92f127a08c71e1269abc07aba3b7f30f943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/80/641/1655</topic><topic>631/80/641/2002</topic><topic>631/80/641/2187</topic><topic>Biology</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cellular signal transduction</topic><topic>Developmental Biology</topic><topic>Fluctuations</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genomes</topic><topic>Life Sciences</topic><topic>M Phase Cell Cycle Checkpoints</topic><topic>Nutrients</topic><topic>Proteins</topic><topic>Schizosaccharomyces - metabolism</topic><topic>Schizosaccharomyces pombe Proteins - metabolism</topic><topic>Signal Transduction</topic><topic>Spindle (Cell division)</topic><topic>Spindle Apparatus</topic><topic>Stem Cells</topic><topic>System theory</topic><topic>Testing</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heinrich, Stephanie</creatorcontrib><creatorcontrib>Geissen, Eva-Maria</creatorcontrib><creatorcontrib>Kamenz, Julia</creatorcontrib><creatorcontrib>Trautmann, Susanne</creatorcontrib><creatorcontrib>Widmer, Christian</creatorcontrib><creatorcontrib>Drewe, Philipp</creatorcontrib><creatorcontrib>Knop, Michael</creatorcontrib><creatorcontrib>Radde, Nicole</creatorcontrib><creatorcontrib>Hasenauer, Jan</creatorcontrib><creatorcontrib>Hauf, Silke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heinrich, Stephanie</au><au>Geissen, Eva-Maria</au><au>Kamenz, Julia</au><au>Trautmann, Susanne</au><au>Widmer, Christian</au><au>Drewe, Philipp</au><au>Knop, Michael</au><au>Radde, Nicole</au><au>Hasenauer, Jan</au><au>Hauf, Silke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determinants of robustness in spindle assembly checkpoint signalling</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>15</volume><issue>11</issue><spage>1328</spage><epage>1339</epage><pages>1328-1339</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>The spindle assembly checkpoint is a conserved signalling pathway that protects genome integrity. Given its central importance, this checkpoint should withstand stochastic fluctuations and environmental perturbations, but the extent of and mechanisms underlying its robustness remain unknown. We probed spindle assembly checkpoint signalling by modulating checkpoint protein abundance and nutrient conditions in fission yeast. For core checkpoint proteins, a mere 20% reduction can suffice to impair signalling, revealing a surprising fragility. Quantification of protein abundance in single cells showed little variability (noise) of critical proteins, explaining why the checkpoint normally functions reliably. Checkpoint-mediated stoichiometric inhibition of the anaphase activator Cdc20 (Slp1 in Schizosaccharomyces pombe ) can account for the tolerance towards small fluctuations in protein abundance and explains our observation that some perturbations lead to non-genetic variation in the checkpoint response. Our work highlights low gene expression noise as an important determinant of reliable checkpoint signalling. Hauf and colleagues modulate the amount of spindle assembly checkpoint (SAC) proteins in fission yeast, revealing that a small reduction can cause checkpoint errors. However, levels of critical proteins normally show little variation, which explains the robustness of the SAC.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24161933</pmid><doi>10.1038/ncb2864</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5938-721X</orcidid><orcidid>https://orcid.org/000000015938721X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2013-11, Vol.15 (11), p.1328-1339
issn 1465-7392
1476-4679
language eng
recordid cdi_proquest_miscellaneous_1449276111
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/80/641/1655
631/80/641/2002
631/80/641/2187
Biology
Cancer Research
Cell Biology
Cellular signal transduction
Developmental Biology
Fluctuations
Gene expression
Genetic aspects
Genetic diversity
Genomes
Life Sciences
M Phase Cell Cycle Checkpoints
Nutrients
Proteins
Schizosaccharomyces - metabolism
Schizosaccharomyces pombe Proteins - metabolism
Signal Transduction
Spindle (Cell division)
Spindle Apparatus
Stem Cells
System theory
Testing
Yeast
Yeasts
title Determinants of robustness in spindle assembly checkpoint signalling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determinants%20of%20robustness%20in%20spindle%20assembly%20checkpoint%20signalling&rft.jtitle=Nature%20cell%20biology&rft.au=Heinrich,%20Stephanie&rft.date=2013-11-01&rft.volume=15&rft.issue=11&rft.spage=1328&rft.epage=1339&rft.pages=1328-1339&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb2864&rft_dat=%3Cgale_proqu%3EA351788791%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448410366&rft_id=info:pmid/24161933&rft_galeid=A351788791&rfr_iscdi=true