Regulation of chloroplast metabolism in leaves: Evidence that NADP-dependent glyceraldehydephosphate dehydrogenase, but not ferredoxin-NADP reductase, controls electron flow to phosphoglycerate in the dark-light transition
P700 is rapidly, but only transiently photooxidized upon illuminating dark-adapted leaves. Initial oxidation is followed by a reductive phase even under far-red illumination which excites predominantly photosystem (PS) I. In this phase, oxidized P700 is reduced by electrons coming from PSII. Charge...
Gespeichert in:
Veröffentlicht in: | Planta 1991-10, Vol.185 (3), p.337-343 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 343 |
---|---|
container_issue | 3 |
container_start_page | 337 |
container_title | Planta |
container_volume | 185 |
creator | Siebke, K. (Wuerzburg Univ. (Germany). Inst. of Botany and Pharmaceutical Biology) Laisk, A Neimanis, S Heber, U |
description | P700 is rapidly, but only transiently photooxidized upon illuminating dark-adapted leaves. Initial oxidation is followed by a reductive phase even under far-red illumination which excites predominantly photosystem (PS) I. In this phase, oxidized P700 is reduced by electrons coming from PSII. Charge separation in the reaction center of PSI is prevented by the unavailability of electron acceptors on the reducing side of PSI. It is subsequently made possible by the opening of an electron gate which is situated between PSI and the electron acceptor phosphoglycerate. Electron acceptors immediately available for reduction while the gate is closed corresponded to 10 nmol·(mg chlorophyll)-1 electrons in geranium leaves, 16 nmol·(mg chlorophyll)-1 in sunflower and 22 nmol·(mg chlorophyll)-1 in oleander. Reduction of NADP during the initial phase of P700 oxidation showed that the electron gate was not represented by ferredoxin-NADP reductase. Availability of ATP indicated that electron flow was not hindered by deactivation of the thylakoid ATP synthetase. It is concluded that NADP-dependent glyceraldehydephosphate dehydrogenase is completely deactivated in the dark and activated in the light. The rate of activation depends on the length of the preceding dark period. As chloroplasts contain both NAD- and NADP-dependent glyceraldehydephosphate dehydrogenases, deactivation of the NADP-dependent enzyme disconnects chloroplast NAD and NADP systems and prevents phosphoglycerate reduction in the dark at the expense of NADPH and ATP which are generated by glucose-6-phosphate oxidation and glycolytic starch breakdown, respectively. |
doi_str_mv | 10.1007/BF00201053 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1449269726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23381300</jstor_id><sourcerecordid>23381300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-8a025bc5ddb84afc91b704c3fa0a7ed12896bfb9ed519bd96bb359a7663634023</originalsourceid><addsrcrecordid>eNpFkUlvFDEQhS0EIsPAhSMSyEeEaPDSK7eQTAJSBAjBueWlegluu7Hdgfmz_BY86YGcXFXv06uyHkJPKXlDCanevr8ghBFKCn4PbWjOWcZIXt9HG0JSTRpenKBHIVwTksSqeohOWE7rMqfFBv35Cv1iRBydxa7DajDOu9mIEPEEUUhnxjDh0WID4gbCO7y7GTVYBTgOIuJPp-dfMg0z2DSMuDd7BV4YDcM-TQcX5kQBvu2968GKAK-xXCK2LuIOvAftfo82Oxjh1Cwq3iLK2eidCRgMqFRZ3Bn3C0eHV1d3XJXM03FxSDuE_5GZsR8ijl7YMB7-9Bg96IQJ8OT4btH3i923sw_Z1efLj2enV5nirIxZLQgrpCq0lnUuOtVQWZFc8U4QUYGmrG5K2ckGdEEbqVMjedGIqix5yXPC-Ba9XH1n734uEGI7jUGBMcKCW0JL87xhZVOxMqGvVlR5F4KHrp39OAm_bylpD3m2d3km-MXRd5ET6P_ovwAT8HwFrkN0_k7nvKY85b9Fz1a9E64VvR9De75r2GVTFxX_Czo4srA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449269726</pqid></control><display><type>article</type><title>Regulation of chloroplast metabolism in leaves: Evidence that NADP-dependent glyceraldehydephosphate dehydrogenase, but not ferredoxin-NADP reductase, controls electron flow to phosphoglycerate in the dark-light transition</title><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Siebke, K. (Wuerzburg Univ. (Germany). Inst. of Botany and Pharmaceutical Biology) ; Laisk, A ; Neimanis, S ; Heber, U</creator><creatorcontrib>Siebke, K. (Wuerzburg Univ. (Germany). Inst. of Botany and Pharmaceutical Biology) ; Laisk, A ; Neimanis, S ; Heber, U</creatorcontrib><description>P700 is rapidly, but only transiently photooxidized upon illuminating dark-adapted leaves. Initial oxidation is followed by a reductive phase even under far-red illumination which excites predominantly photosystem (PS) I. In this phase, oxidized P700 is reduced by electrons coming from PSII. Charge separation in the reaction center of PSI is prevented by the unavailability of electron acceptors on the reducing side of PSI. It is subsequently made possible by the opening of an electron gate which is situated between PSI and the electron acceptor phosphoglycerate. Electron acceptors immediately available for reduction while the gate is closed corresponded to 10 nmol·(mg chlorophyll)-1 electrons in geranium leaves, 16 nmol·(mg chlorophyll)-1 in sunflower and 22 nmol·(mg chlorophyll)-1 in oleander. Reduction of NADP during the initial phase of P700 oxidation showed that the electron gate was not represented by ferredoxin-NADP reductase. Availability of ATP indicated that electron flow was not hindered by deactivation of the thylakoid ATP synthetase. It is concluded that NADP-dependent glyceraldehydephosphate dehydrogenase is completely deactivated in the dark and activated in the light. The rate of activation depends on the length of the preceding dark period. As chloroplasts contain both NAD- and NADP-dependent glyceraldehydephosphate dehydrogenases, deactivation of the NADP-dependent enzyme disconnects chloroplast NAD and NADP systems and prevents phosphoglycerate reduction in the dark at the expense of NADPH and ATP which are generated by glucose-6-phosphate oxidation and glycolytic starch breakdown, respectively.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/BF00201053</identifier><identifier>PMID: 24186415</identifier><language>eng</language><publisher>Germany: Springer-Verlag</publisher><subject>Arbutus ; Blatt ; Brugmansia ; Chloroplast ; CHLOROPLASTE ; CHLOROPLASTS ; CLOROPLASTO ; CROPS ; CULTIVOS ; Dehydrogenases ; Elektronentransport ; ENZIMAS ; Enzym ; ENZYME ; ENZYMES ; Ferredoxins ; FEUILLE ; FOSFOLIPIDOS ; FOTOSINTESIS ; GLICERALDEHIDO 3 FOSF DESHIDROG ; GLYCERALDEHYDE 3 PHOSPHATE DEHYDROG ; GLYCERALDEHYDE 3 PHOSPHATE DESHYDRO ; Helianthus ; HOJAS ; Inhaltsstoff ; LEAVES ; Licht ; METABOLISM ; METABOLISME ; METABOLISMO ; Nerium ; Optical filters ; Oxidation ; Pelargonium ; PHOSPHATIDE ; PHOSPHOLIPIDS ; PHOTOSYNTHESE ; PHOTOSYNTHESIS ; Photosystem I ; Physiological regulation ; PLANTE DE CULTURE ; Spinat ; Stoffwechsel ; Sunflowers ; Zea</subject><ispartof>Planta, 1991-10, Vol.185 (3), p.337-343</ispartof><rights>Springer-Verlag 1991</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-8a025bc5ddb84afc91b704c3fa0a7ed12896bfb9ed519bd96bb359a7663634023</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23381300$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23381300$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24186415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siebke, K. (Wuerzburg Univ. (Germany). Inst. of Botany and Pharmaceutical Biology)</creatorcontrib><creatorcontrib>Laisk, A</creatorcontrib><creatorcontrib>Neimanis, S</creatorcontrib><creatorcontrib>Heber, U</creatorcontrib><title>Regulation of chloroplast metabolism in leaves: Evidence that NADP-dependent glyceraldehydephosphate dehydrogenase, but not ferredoxin-NADP reductase, controls electron flow to phosphoglycerate in the dark-light transition</title><title>Planta</title><addtitle>Planta</addtitle><description>P700 is rapidly, but only transiently photooxidized upon illuminating dark-adapted leaves. Initial oxidation is followed by a reductive phase even under far-red illumination which excites predominantly photosystem (PS) I. In this phase, oxidized P700 is reduced by electrons coming from PSII. Charge separation in the reaction center of PSI is prevented by the unavailability of electron acceptors on the reducing side of PSI. It is subsequently made possible by the opening of an electron gate which is situated between PSI and the electron acceptor phosphoglycerate. Electron acceptors immediately available for reduction while the gate is closed corresponded to 10 nmol·(mg chlorophyll)-1 electrons in geranium leaves, 16 nmol·(mg chlorophyll)-1 in sunflower and 22 nmol·(mg chlorophyll)-1 in oleander. Reduction of NADP during the initial phase of P700 oxidation showed that the electron gate was not represented by ferredoxin-NADP reductase. Availability of ATP indicated that electron flow was not hindered by deactivation of the thylakoid ATP synthetase. It is concluded that NADP-dependent glyceraldehydephosphate dehydrogenase is completely deactivated in the dark and activated in the light. The rate of activation depends on the length of the preceding dark period. As chloroplasts contain both NAD- and NADP-dependent glyceraldehydephosphate dehydrogenases, deactivation of the NADP-dependent enzyme disconnects chloroplast NAD and NADP systems and prevents phosphoglycerate reduction in the dark at the expense of NADPH and ATP which are generated by glucose-6-phosphate oxidation and glycolytic starch breakdown, respectively.</description><subject>Arbutus</subject><subject>Blatt</subject><subject>Brugmansia</subject><subject>Chloroplast</subject><subject>CHLOROPLASTE</subject><subject>CHLOROPLASTS</subject><subject>CLOROPLASTO</subject><subject>CROPS</subject><subject>CULTIVOS</subject><subject>Dehydrogenases</subject><subject>Elektronentransport</subject><subject>ENZIMAS</subject><subject>Enzym</subject><subject>ENZYME</subject><subject>ENZYMES</subject><subject>Ferredoxins</subject><subject>FEUILLE</subject><subject>FOSFOLIPIDOS</subject><subject>FOTOSINTESIS</subject><subject>GLICERALDEHIDO 3 FOSF DESHIDROG</subject><subject>GLYCERALDEHYDE 3 PHOSPHATE DEHYDROG</subject><subject>GLYCERALDEHYDE 3 PHOSPHATE DESHYDRO</subject><subject>Helianthus</subject><subject>HOJAS</subject><subject>Inhaltsstoff</subject><subject>LEAVES</subject><subject>Licht</subject><subject>METABOLISM</subject><subject>METABOLISME</subject><subject>METABOLISMO</subject><subject>Nerium</subject><subject>Optical filters</subject><subject>Oxidation</subject><subject>Pelargonium</subject><subject>PHOSPHATIDE</subject><subject>PHOSPHOLIPIDS</subject><subject>PHOTOSYNTHESE</subject><subject>PHOTOSYNTHESIS</subject><subject>Photosystem I</subject><subject>Physiological regulation</subject><subject>PLANTE DE CULTURE</subject><subject>Spinat</subject><subject>Stoffwechsel</subject><subject>Sunflowers</subject><subject>Zea</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNpFkUlvFDEQhS0EIsPAhSMSyEeEaPDSK7eQTAJSBAjBueWlegluu7Hdgfmz_BY86YGcXFXv06uyHkJPKXlDCanevr8ghBFKCn4PbWjOWcZIXt9HG0JSTRpenKBHIVwTksSqeohOWE7rMqfFBv35Cv1iRBydxa7DajDOu9mIEPEEUUhnxjDh0WID4gbCO7y7GTVYBTgOIuJPp-dfMg0z2DSMuDd7BV4YDcM-TQcX5kQBvu2968GKAK-xXCK2LuIOvAftfo82Oxjh1Cwq3iLK2eidCRgMqFRZ3Bn3C0eHV1d3XJXM03FxSDuE_5GZsR8ijl7YMB7-9Bg96IQJ8OT4btH3i923sw_Z1efLj2enV5nirIxZLQgrpCq0lnUuOtVQWZFc8U4QUYGmrG5K2ckGdEEbqVMjedGIqix5yXPC-Ba9XH1n734uEGI7jUGBMcKCW0JL87xhZVOxMqGvVlR5F4KHrp39OAm_bylpD3m2d3km-MXRd5ET6P_ovwAT8HwFrkN0_k7nvKY85b9Fz1a9E64VvR9De75r2GVTFxX_Czo4srA</recordid><startdate>199110</startdate><enddate>199110</enddate><creator>Siebke, K. (Wuerzburg Univ. (Germany). Inst. of Botany and Pharmaceutical Biology)</creator><creator>Laisk, A</creator><creator>Neimanis, S</creator><creator>Heber, U</creator><general>Springer-Verlag</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199110</creationdate><title>Regulation of chloroplast metabolism in leaves: Evidence that NADP-dependent glyceraldehydephosphate dehydrogenase, but not ferredoxin-NADP reductase, controls electron flow to phosphoglycerate in the dark-light transition</title><author>Siebke, K. (Wuerzburg Univ. (Germany). Inst. of Botany and Pharmaceutical Biology) ; Laisk, A ; Neimanis, S ; Heber, U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-8a025bc5ddb84afc91b704c3fa0a7ed12896bfb9ed519bd96bb359a7663634023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Arbutus</topic><topic>Blatt</topic><topic>Brugmansia</topic><topic>Chloroplast</topic><topic>CHLOROPLASTE</topic><topic>CHLOROPLASTS</topic><topic>CLOROPLASTO</topic><topic>CROPS</topic><topic>CULTIVOS</topic><topic>Dehydrogenases</topic><topic>Elektronentransport</topic><topic>ENZIMAS</topic><topic>Enzym</topic><topic>ENZYME</topic><topic>ENZYMES</topic><topic>Ferredoxins</topic><topic>FEUILLE</topic><topic>FOSFOLIPIDOS</topic><topic>FOTOSINTESIS</topic><topic>GLICERALDEHIDO 3 FOSF DESHIDROG</topic><topic>GLYCERALDEHYDE 3 PHOSPHATE DEHYDROG</topic><topic>GLYCERALDEHYDE 3 PHOSPHATE DESHYDRO</topic><topic>Helianthus</topic><topic>HOJAS</topic><topic>Inhaltsstoff</topic><topic>LEAVES</topic><topic>Licht</topic><topic>METABOLISM</topic><topic>METABOLISME</topic><topic>METABOLISMO</topic><topic>Nerium</topic><topic>Optical filters</topic><topic>Oxidation</topic><topic>Pelargonium</topic><topic>PHOSPHATIDE</topic><topic>PHOSPHOLIPIDS</topic><topic>PHOTOSYNTHESE</topic><topic>PHOTOSYNTHESIS</topic><topic>Photosystem I</topic><topic>Physiological regulation</topic><topic>PLANTE DE CULTURE</topic><topic>Spinat</topic><topic>Stoffwechsel</topic><topic>Sunflowers</topic><topic>Zea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siebke, K. (Wuerzburg Univ. (Germany). Inst. of Botany and Pharmaceutical Biology)</creatorcontrib><creatorcontrib>Laisk, A</creatorcontrib><creatorcontrib>Neimanis, S</creatorcontrib><creatorcontrib>Heber, U</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siebke, K. (Wuerzburg Univ. (Germany). Inst. of Botany and Pharmaceutical Biology)</au><au>Laisk, A</au><au>Neimanis, S</au><au>Heber, U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of chloroplast metabolism in leaves: Evidence that NADP-dependent glyceraldehydephosphate dehydrogenase, but not ferredoxin-NADP reductase, controls electron flow to phosphoglycerate in the dark-light transition</atitle><jtitle>Planta</jtitle><addtitle>Planta</addtitle><date>1991-10</date><risdate>1991</risdate><volume>185</volume><issue>3</issue><spage>337</spage><epage>343</epage><pages>337-343</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>P700 is rapidly, but only transiently photooxidized upon illuminating dark-adapted leaves. Initial oxidation is followed by a reductive phase even under far-red illumination which excites predominantly photosystem (PS) I. In this phase, oxidized P700 is reduced by electrons coming from PSII. Charge separation in the reaction center of PSI is prevented by the unavailability of electron acceptors on the reducing side of PSI. It is subsequently made possible by the opening of an electron gate which is situated between PSI and the electron acceptor phosphoglycerate. Electron acceptors immediately available for reduction while the gate is closed corresponded to 10 nmol·(mg chlorophyll)-1 electrons in geranium leaves, 16 nmol·(mg chlorophyll)-1 in sunflower and 22 nmol·(mg chlorophyll)-1 in oleander. Reduction of NADP during the initial phase of P700 oxidation showed that the electron gate was not represented by ferredoxin-NADP reductase. Availability of ATP indicated that electron flow was not hindered by deactivation of the thylakoid ATP synthetase. It is concluded that NADP-dependent glyceraldehydephosphate dehydrogenase is completely deactivated in the dark and activated in the light. The rate of activation depends on the length of the preceding dark period. As chloroplasts contain both NAD- and NADP-dependent glyceraldehydephosphate dehydrogenases, deactivation of the NADP-dependent enzyme disconnects chloroplast NAD and NADP systems and prevents phosphoglycerate reduction in the dark at the expense of NADPH and ATP which are generated by glucose-6-phosphate oxidation and glycolytic starch breakdown, respectively.</abstract><cop>Germany</cop><pub>Springer-Verlag</pub><pmid>24186415</pmid><doi>10.1007/BF00201053</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0935 |
ispartof | Planta, 1991-10, Vol.185 (3), p.337-343 |
issn | 0032-0935 1432-2048 |
language | eng |
recordid | cdi_proquest_miscellaneous_1449269726 |
source | JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings |
subjects | Arbutus Blatt Brugmansia Chloroplast CHLOROPLASTE CHLOROPLASTS CLOROPLASTO CROPS CULTIVOS Dehydrogenases Elektronentransport ENZIMAS Enzym ENZYME ENZYMES Ferredoxins FEUILLE FOSFOLIPIDOS FOTOSINTESIS GLICERALDEHIDO 3 FOSF DESHIDROG GLYCERALDEHYDE 3 PHOSPHATE DEHYDROG GLYCERALDEHYDE 3 PHOSPHATE DESHYDRO Helianthus HOJAS Inhaltsstoff LEAVES Licht METABOLISM METABOLISME METABOLISMO Nerium Optical filters Oxidation Pelargonium PHOSPHATIDE PHOSPHOLIPIDS PHOTOSYNTHESE PHOTOSYNTHESIS Photosystem I Physiological regulation PLANTE DE CULTURE Spinat Stoffwechsel Sunflowers Zea |
title | Regulation of chloroplast metabolism in leaves: Evidence that NADP-dependent glyceraldehydephosphate dehydrogenase, but not ferredoxin-NADP reductase, controls electron flow to phosphoglycerate in the dark-light transition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20chloroplast%20metabolism%20in%20leaves:%20Evidence%20that%20NADP-dependent%20glyceraldehydephosphate%20dehydrogenase,%20but%20not%20ferredoxin-NADP%20reductase,%20controls%20electron%20flow%20to%20phosphoglycerate%20in%20the%20dark-light%20transition&rft.jtitle=Planta&rft.au=Siebke,%20K.%20(Wuerzburg%20Univ.%20(Germany).%20Inst.%20of%20Botany%20and%20Pharmaceutical%20Biology)&rft.date=1991-10&rft.volume=185&rft.issue=3&rft.spage=337&rft.epage=343&rft.pages=337-343&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/BF00201053&rft_dat=%3Cjstor_proqu%3E23381300%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449269726&rft_id=info:pmid/24186415&rft_jstor_id=23381300&rfr_iscdi=true |