Regulation of chloroplast metabolism in leaves: Evidence that NADP-dependent glyceraldehydephosphate dehydrogenase, but not ferredoxin-NADP reductase, controls electron flow to phosphoglycerate in the dark-light transition

P700 is rapidly, but only transiently photooxidized upon illuminating dark-adapted leaves. Initial oxidation is followed by a reductive phase even under far-red illumination which excites predominantly photosystem (PS) I. In this phase, oxidized P700 is reduced by electrons coming from PSII. Charge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 1991-10, Vol.185 (3), p.337-343
Hauptverfasser: Siebke, K. (Wuerzburg Univ. (Germany). Inst. of Botany and Pharmaceutical Biology), Laisk, A, Neimanis, S, Heber, U
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 343
container_issue 3
container_start_page 337
container_title Planta
container_volume 185
creator Siebke, K. (Wuerzburg Univ. (Germany). Inst. of Botany and Pharmaceutical Biology)
Laisk, A
Neimanis, S
Heber, U
description P700 is rapidly, but only transiently photooxidized upon illuminating dark-adapted leaves. Initial oxidation is followed by a reductive phase even under far-red illumination which excites predominantly photosystem (PS) I. In this phase, oxidized P700 is reduced by electrons coming from PSII. Charge separation in the reaction center of PSI is prevented by the unavailability of electron acceptors on the reducing side of PSI. It is subsequently made possible by the opening of an electron gate which is situated between PSI and the electron acceptor phosphoglycerate. Electron acceptors immediately available for reduction while the gate is closed corresponded to 10 nmol·(mg chlorophyll)-1 electrons in geranium leaves, 16 nmol·(mg chlorophyll)-1 in sunflower and 22 nmol·(mg chlorophyll)-1 in oleander. Reduction of NADP during the initial phase of P700 oxidation showed that the electron gate was not represented by ferredoxin-NADP reductase. Availability of ATP indicated that electron flow was not hindered by deactivation of the thylakoid ATP synthetase. It is concluded that NADP-dependent glyceraldehydephosphate dehydrogenase is completely deactivated in the dark and activated in the light. The rate of activation depends on the length of the preceding dark period. As chloroplasts contain both NAD- and NADP-dependent glyceraldehydephosphate dehydrogenases, deactivation of the NADP-dependent enzyme disconnects chloroplast NAD and NADP systems and prevents phosphoglycerate reduction in the dark at the expense of NADPH and ATP which are generated by glucose-6-phosphate oxidation and glycolytic starch breakdown, respectively.
doi_str_mv 10.1007/BF00201053
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1449269726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23381300</jstor_id><sourcerecordid>23381300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-8a025bc5ddb84afc91b704c3fa0a7ed12896bfb9ed519bd96bb359a7663634023</originalsourceid><addsrcrecordid>eNpFkUlvFDEQhS0EIsPAhSMSyEeEaPDSK7eQTAJSBAjBueWlegluu7Hdgfmz_BY86YGcXFXv06uyHkJPKXlDCanevr8ghBFKCn4PbWjOWcZIXt9HG0JSTRpenKBHIVwTksSqeohOWE7rMqfFBv35Cv1iRBydxa7DajDOu9mIEPEEUUhnxjDh0WID4gbCO7y7GTVYBTgOIuJPp-dfMg0z2DSMuDd7BV4YDcM-TQcX5kQBvu2968GKAK-xXCK2LuIOvAftfo82Oxjh1Cwq3iLK2eidCRgMqFRZ3Bn3C0eHV1d3XJXM03FxSDuE_5GZsR8ijl7YMB7-9Bg96IQJ8OT4btH3i923sw_Z1efLj2enV5nirIxZLQgrpCq0lnUuOtVQWZFc8U4QUYGmrG5K2ckGdEEbqVMjedGIqix5yXPC-Ba9XH1n734uEGI7jUGBMcKCW0JL87xhZVOxMqGvVlR5F4KHrp39OAm_bylpD3m2d3km-MXRd5ET6P_ovwAT8HwFrkN0_k7nvKY85b9Fz1a9E64VvR9De75r2GVTFxX_Czo4srA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449269726</pqid></control><display><type>article</type><title>Regulation of chloroplast metabolism in leaves: Evidence that NADP-dependent glyceraldehydephosphate dehydrogenase, but not ferredoxin-NADP reductase, controls electron flow to phosphoglycerate in the dark-light transition</title><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Siebke, K. (Wuerzburg Univ. (Germany). Inst. of Botany and Pharmaceutical Biology) ; Laisk, A ; Neimanis, S ; Heber, U</creator><creatorcontrib>Siebke, K. (Wuerzburg Univ. (Germany). Inst. of Botany and Pharmaceutical Biology) ; Laisk, A ; Neimanis, S ; Heber, U</creatorcontrib><description>P700 is rapidly, but only transiently photooxidized upon illuminating dark-adapted leaves. Initial oxidation is followed by a reductive phase even under far-red illumination which excites predominantly photosystem (PS) I. In this phase, oxidized P700 is reduced by electrons coming from PSII. Charge separation in the reaction center of PSI is prevented by the unavailability of electron acceptors on the reducing side of PSI. It is subsequently made possible by the opening of an electron gate which is situated between PSI and the electron acceptor phosphoglycerate. Electron acceptors immediately available for reduction while the gate is closed corresponded to 10 nmol·(mg chlorophyll)-1 electrons in geranium leaves, 16 nmol·(mg chlorophyll)-1 in sunflower and 22 nmol·(mg chlorophyll)-1 in oleander. Reduction of NADP during the initial phase of P700 oxidation showed that the electron gate was not represented by ferredoxin-NADP reductase. Availability of ATP indicated that electron flow was not hindered by deactivation of the thylakoid ATP synthetase. It is concluded that NADP-dependent glyceraldehydephosphate dehydrogenase is completely deactivated in the dark and activated in the light. The rate of activation depends on the length of the preceding dark period. As chloroplasts contain both NAD- and NADP-dependent glyceraldehydephosphate dehydrogenases, deactivation of the NADP-dependent enzyme disconnects chloroplast NAD and NADP systems and prevents phosphoglycerate reduction in the dark at the expense of NADPH and ATP which are generated by glucose-6-phosphate oxidation and glycolytic starch breakdown, respectively.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/BF00201053</identifier><identifier>PMID: 24186415</identifier><language>eng</language><publisher>Germany: Springer-Verlag</publisher><subject>Arbutus ; Blatt ; Brugmansia ; Chloroplast ; CHLOROPLASTE ; CHLOROPLASTS ; CLOROPLASTO ; CROPS ; CULTIVOS ; Dehydrogenases ; Elektronentransport ; ENZIMAS ; Enzym ; ENZYME ; ENZYMES ; Ferredoxins ; FEUILLE ; FOSFOLIPIDOS ; FOTOSINTESIS ; GLICERALDEHIDO 3 FOSF DESHIDROG ; GLYCERALDEHYDE 3 PHOSPHATE DEHYDROG ; GLYCERALDEHYDE 3 PHOSPHATE DESHYDRO ; Helianthus ; HOJAS ; Inhaltsstoff ; LEAVES ; Licht ; METABOLISM ; METABOLISME ; METABOLISMO ; Nerium ; Optical filters ; Oxidation ; Pelargonium ; PHOSPHATIDE ; PHOSPHOLIPIDS ; PHOTOSYNTHESE ; PHOTOSYNTHESIS ; Photosystem I ; Physiological regulation ; PLANTE DE CULTURE ; Spinat ; Stoffwechsel ; Sunflowers ; Zea</subject><ispartof>Planta, 1991-10, Vol.185 (3), p.337-343</ispartof><rights>Springer-Verlag 1991</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-8a025bc5ddb84afc91b704c3fa0a7ed12896bfb9ed519bd96bb359a7663634023</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23381300$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23381300$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24186415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Siebke, K. (Wuerzburg Univ. (Germany). Inst. of Botany and Pharmaceutical Biology)</creatorcontrib><creatorcontrib>Laisk, A</creatorcontrib><creatorcontrib>Neimanis, S</creatorcontrib><creatorcontrib>Heber, U</creatorcontrib><title>Regulation of chloroplast metabolism in leaves: Evidence that NADP-dependent glyceraldehydephosphate dehydrogenase, but not ferredoxin-NADP reductase, controls electron flow to phosphoglycerate in the dark-light transition</title><title>Planta</title><addtitle>Planta</addtitle><description>P700 is rapidly, but only transiently photooxidized upon illuminating dark-adapted leaves. Initial oxidation is followed by a reductive phase even under far-red illumination which excites predominantly photosystem (PS) I. In this phase, oxidized P700 is reduced by electrons coming from PSII. Charge separation in the reaction center of PSI is prevented by the unavailability of electron acceptors on the reducing side of PSI. It is subsequently made possible by the opening of an electron gate which is situated between PSI and the electron acceptor phosphoglycerate. Electron acceptors immediately available for reduction while the gate is closed corresponded to 10 nmol·(mg chlorophyll)-1 electrons in geranium leaves, 16 nmol·(mg chlorophyll)-1 in sunflower and 22 nmol·(mg chlorophyll)-1 in oleander. Reduction of NADP during the initial phase of P700 oxidation showed that the electron gate was not represented by ferredoxin-NADP reductase. Availability of ATP indicated that electron flow was not hindered by deactivation of the thylakoid ATP synthetase. It is concluded that NADP-dependent glyceraldehydephosphate dehydrogenase is completely deactivated in the dark and activated in the light. The rate of activation depends on the length of the preceding dark period. As chloroplasts contain both NAD- and NADP-dependent glyceraldehydephosphate dehydrogenases, deactivation of the NADP-dependent enzyme disconnects chloroplast NAD and NADP systems and prevents phosphoglycerate reduction in the dark at the expense of NADPH and ATP which are generated by glucose-6-phosphate oxidation and glycolytic starch breakdown, respectively.</description><subject>Arbutus</subject><subject>Blatt</subject><subject>Brugmansia</subject><subject>Chloroplast</subject><subject>CHLOROPLASTE</subject><subject>CHLOROPLASTS</subject><subject>CLOROPLASTO</subject><subject>CROPS</subject><subject>CULTIVOS</subject><subject>Dehydrogenases</subject><subject>Elektronentransport</subject><subject>ENZIMAS</subject><subject>Enzym</subject><subject>ENZYME</subject><subject>ENZYMES</subject><subject>Ferredoxins</subject><subject>FEUILLE</subject><subject>FOSFOLIPIDOS</subject><subject>FOTOSINTESIS</subject><subject>GLICERALDEHIDO 3 FOSF DESHIDROG</subject><subject>GLYCERALDEHYDE 3 PHOSPHATE DEHYDROG</subject><subject>GLYCERALDEHYDE 3 PHOSPHATE DESHYDRO</subject><subject>Helianthus</subject><subject>HOJAS</subject><subject>Inhaltsstoff</subject><subject>LEAVES</subject><subject>Licht</subject><subject>METABOLISM</subject><subject>METABOLISME</subject><subject>METABOLISMO</subject><subject>Nerium</subject><subject>Optical filters</subject><subject>Oxidation</subject><subject>Pelargonium</subject><subject>PHOSPHATIDE</subject><subject>PHOSPHOLIPIDS</subject><subject>PHOTOSYNTHESE</subject><subject>PHOTOSYNTHESIS</subject><subject>Photosystem I</subject><subject>Physiological regulation</subject><subject>PLANTE DE CULTURE</subject><subject>Spinat</subject><subject>Stoffwechsel</subject><subject>Sunflowers</subject><subject>Zea</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><recordid>eNpFkUlvFDEQhS0EIsPAhSMSyEeEaPDSK7eQTAJSBAjBueWlegluu7Hdgfmz_BY86YGcXFXv06uyHkJPKXlDCanevr8ghBFKCn4PbWjOWcZIXt9HG0JSTRpenKBHIVwTksSqeohOWE7rMqfFBv35Cv1iRBydxa7DajDOu9mIEPEEUUhnxjDh0WID4gbCO7y7GTVYBTgOIuJPp-dfMg0z2DSMuDd7BV4YDcM-TQcX5kQBvu2968GKAK-xXCK2LuIOvAftfo82Oxjh1Cwq3iLK2eidCRgMqFRZ3Bn3C0eHV1d3XJXM03FxSDuE_5GZsR8ijl7YMB7-9Bg96IQJ8OT4btH3i923sw_Z1efLj2enV5nirIxZLQgrpCq0lnUuOtVQWZFc8U4QUYGmrG5K2ckGdEEbqVMjedGIqix5yXPC-Ba9XH1n734uEGI7jUGBMcKCW0JL87xhZVOxMqGvVlR5F4KHrp39OAm_bylpD3m2d3km-MXRd5ET6P_ovwAT8HwFrkN0_k7nvKY85b9Fz1a9E64VvR9De75r2GVTFxX_Czo4srA</recordid><startdate>199110</startdate><enddate>199110</enddate><creator>Siebke, K. (Wuerzburg Univ. (Germany). Inst. of Botany and Pharmaceutical Biology)</creator><creator>Laisk, A</creator><creator>Neimanis, S</creator><creator>Heber, U</creator><general>Springer-Verlag</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199110</creationdate><title>Regulation of chloroplast metabolism in leaves: Evidence that NADP-dependent glyceraldehydephosphate dehydrogenase, but not ferredoxin-NADP reductase, controls electron flow to phosphoglycerate in the dark-light transition</title><author>Siebke, K. (Wuerzburg Univ. (Germany). Inst. of Botany and Pharmaceutical Biology) ; Laisk, A ; Neimanis, S ; Heber, U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-8a025bc5ddb84afc91b704c3fa0a7ed12896bfb9ed519bd96bb359a7663634023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Arbutus</topic><topic>Blatt</topic><topic>Brugmansia</topic><topic>Chloroplast</topic><topic>CHLOROPLASTE</topic><topic>CHLOROPLASTS</topic><topic>CLOROPLASTO</topic><topic>CROPS</topic><topic>CULTIVOS</topic><topic>Dehydrogenases</topic><topic>Elektronentransport</topic><topic>ENZIMAS</topic><topic>Enzym</topic><topic>ENZYME</topic><topic>ENZYMES</topic><topic>Ferredoxins</topic><topic>FEUILLE</topic><topic>FOSFOLIPIDOS</topic><topic>FOTOSINTESIS</topic><topic>GLICERALDEHIDO 3 FOSF DESHIDROG</topic><topic>GLYCERALDEHYDE 3 PHOSPHATE DEHYDROG</topic><topic>GLYCERALDEHYDE 3 PHOSPHATE DESHYDRO</topic><topic>Helianthus</topic><topic>HOJAS</topic><topic>Inhaltsstoff</topic><topic>LEAVES</topic><topic>Licht</topic><topic>METABOLISM</topic><topic>METABOLISME</topic><topic>METABOLISMO</topic><topic>Nerium</topic><topic>Optical filters</topic><topic>Oxidation</topic><topic>Pelargonium</topic><topic>PHOSPHATIDE</topic><topic>PHOSPHOLIPIDS</topic><topic>PHOTOSYNTHESE</topic><topic>PHOTOSYNTHESIS</topic><topic>Photosystem I</topic><topic>Physiological regulation</topic><topic>PLANTE DE CULTURE</topic><topic>Spinat</topic><topic>Stoffwechsel</topic><topic>Sunflowers</topic><topic>Zea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siebke, K. (Wuerzburg Univ. (Germany). Inst. of Botany and Pharmaceutical Biology)</creatorcontrib><creatorcontrib>Laisk, A</creatorcontrib><creatorcontrib>Neimanis, S</creatorcontrib><creatorcontrib>Heber, U</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siebke, K. (Wuerzburg Univ. (Germany). Inst. of Botany and Pharmaceutical Biology)</au><au>Laisk, A</au><au>Neimanis, S</au><au>Heber, U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of chloroplast metabolism in leaves: Evidence that NADP-dependent glyceraldehydephosphate dehydrogenase, but not ferredoxin-NADP reductase, controls electron flow to phosphoglycerate in the dark-light transition</atitle><jtitle>Planta</jtitle><addtitle>Planta</addtitle><date>1991-10</date><risdate>1991</risdate><volume>185</volume><issue>3</issue><spage>337</spage><epage>343</epage><pages>337-343</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><abstract>P700 is rapidly, but only transiently photooxidized upon illuminating dark-adapted leaves. Initial oxidation is followed by a reductive phase even under far-red illumination which excites predominantly photosystem (PS) I. In this phase, oxidized P700 is reduced by electrons coming from PSII. Charge separation in the reaction center of PSI is prevented by the unavailability of electron acceptors on the reducing side of PSI. It is subsequently made possible by the opening of an electron gate which is situated between PSI and the electron acceptor phosphoglycerate. Electron acceptors immediately available for reduction while the gate is closed corresponded to 10 nmol·(mg chlorophyll)-1 electrons in geranium leaves, 16 nmol·(mg chlorophyll)-1 in sunflower and 22 nmol·(mg chlorophyll)-1 in oleander. Reduction of NADP during the initial phase of P700 oxidation showed that the electron gate was not represented by ferredoxin-NADP reductase. Availability of ATP indicated that electron flow was not hindered by deactivation of the thylakoid ATP synthetase. It is concluded that NADP-dependent glyceraldehydephosphate dehydrogenase is completely deactivated in the dark and activated in the light. The rate of activation depends on the length of the preceding dark period. As chloroplasts contain both NAD- and NADP-dependent glyceraldehydephosphate dehydrogenases, deactivation of the NADP-dependent enzyme disconnects chloroplast NAD and NADP systems and prevents phosphoglycerate reduction in the dark at the expense of NADPH and ATP which are generated by glucose-6-phosphate oxidation and glycolytic starch breakdown, respectively.</abstract><cop>Germany</cop><pub>Springer-Verlag</pub><pmid>24186415</pmid><doi>10.1007/BF00201053</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 1991-10, Vol.185 (3), p.337-343
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_1449269726
source JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings
subjects Arbutus
Blatt
Brugmansia
Chloroplast
CHLOROPLASTE
CHLOROPLASTS
CLOROPLASTO
CROPS
CULTIVOS
Dehydrogenases
Elektronentransport
ENZIMAS
Enzym
ENZYME
ENZYMES
Ferredoxins
FEUILLE
FOSFOLIPIDOS
FOTOSINTESIS
GLICERALDEHIDO 3 FOSF DESHIDROG
GLYCERALDEHYDE 3 PHOSPHATE DEHYDROG
GLYCERALDEHYDE 3 PHOSPHATE DESHYDRO
Helianthus
HOJAS
Inhaltsstoff
LEAVES
Licht
METABOLISM
METABOLISME
METABOLISMO
Nerium
Optical filters
Oxidation
Pelargonium
PHOSPHATIDE
PHOSPHOLIPIDS
PHOTOSYNTHESE
PHOTOSYNTHESIS
Photosystem I
Physiological regulation
PLANTE DE CULTURE
Spinat
Stoffwechsel
Sunflowers
Zea
title Regulation of chloroplast metabolism in leaves: Evidence that NADP-dependent glyceraldehydephosphate dehydrogenase, but not ferredoxin-NADP reductase, controls electron flow to phosphoglycerate in the dark-light transition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20chloroplast%20metabolism%20in%20leaves:%20Evidence%20that%20NADP-dependent%20glyceraldehydephosphate%20dehydrogenase,%20but%20not%20ferredoxin-NADP%20reductase,%20controls%20electron%20flow%20to%20phosphoglycerate%20in%20the%20dark-light%20transition&rft.jtitle=Planta&rft.au=Siebke,%20K.%20(Wuerzburg%20Univ.%20(Germany).%20Inst.%20of%20Botany%20and%20Pharmaceutical%20Biology)&rft.date=1991-10&rft.volume=185&rft.issue=3&rft.spage=337&rft.epage=343&rft.pages=337-343&rft.issn=0032-0935&rft.eissn=1432-2048&rft_id=info:doi/10.1007/BF00201053&rft_dat=%3Cjstor_proqu%3E23381300%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449269726&rft_id=info:pmid/24186415&rft_jstor_id=23381300&rfr_iscdi=true