Hydration and radiation effects on the residual stress state of cortical bone
The change in the biaxial residual stress state of hydroxyapatite crystals and collagen fibrillar structure in sections of bovine cortical bone has been investigated as a function of dehydration and radiation dose using combined small- and wide-angle X-ray scattering. It is shown that dehydration of...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2013-12, Vol.9 (12), p.9503-9507 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9507 |
---|---|
container_issue | 12 |
container_start_page | 9503 |
container_title | Acta biomaterialia |
container_volume | 9 |
creator | Tung, Patrick K.M. Mudie, Stephen Daniels, John E. |
description | The change in the biaxial residual stress state of hydroxyapatite crystals and collagen fibrillar structure in sections of bovine cortical bone has been investigated as a function of dehydration and radiation dose using combined small- and wide-angle X-ray scattering. It is shown that dehydration of the bone has a pronounced effect on the residual stress state of the crystalline phase, while the impact of radiation damage alone is less dramatic. In the initial hydrated state, a biaxial compressive stress of approximately −150MPa along the bone axis exists in the hydroxyapatite crystals. As water evaporates from the bone material, the stress state moves to a tensile state of approximately 100MPa. The collagen fibrillar structure is initially in a tensile residual stress state when the bone is hydrated and the state increases in magnitude slightly with dehydration. Radiation dose in continually hydrated samples also reduces the initial biaxial compressive stress magnitude in the hydroxyapatite phase; however, the stress remains compressive. Radiation exposure alone does not appear to affect the stress state of the collagen fibrillar structure. |
doi_str_mv | 10.1016/j.actbio.2013.07.028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1449269539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706113003760</els_id><sourcerecordid>1449269539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-d00bc211e2f8a5f84f95e20d9f6e69409cbdaa1aa27a1075bfa60981f5cdbddf3</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRYMoPkb_QKSXbrqtpB9JNoKIL1Dc6DqkkwpmmOlokhH8eyM9unRVt6hbdalDyCmFhgIdLpaNNnn0oWFA2wZ4A0zskEMquKh5P4jdonnHag4DPSBHKS0BWkGZ2CcHrJWUQ0cPydP9l406-zBVerJV1NbPHTqHJqeqyPyGVcTk7UavqpSLTKXojFVwlQkxe1MGY5jwmOw5vUp4sq0L8np783J9Xz8-3z1cXz3WpmMi1xZgNIxSZE7o3onOyR4ZWOkGHGQH0oxWa6o145oC70enB5CCut7Y0VrXLsj5fPc9ho8NpqzWPhlcrfSEYZMU7TrJBtm3sli72WpiSCmiU-_Rr3X8UhTUD0i1VDNI9QNSAVcFZFk72yZsxjXav6VfcsVwORuw_PnpMapkPE4GrY8FnLLB_5_wDVhqhyE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449269539</pqid></control><display><type>article</type><title>Hydration and radiation effects on the residual stress state of cortical bone</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Tung, Patrick K.M. ; Mudie, Stephen ; Daniels, John E.</creator><creatorcontrib>Tung, Patrick K.M. ; Mudie, Stephen ; Daniels, John E.</creatorcontrib><description>The change in the biaxial residual stress state of hydroxyapatite crystals and collagen fibrillar structure in sections of bovine cortical bone has been investigated as a function of dehydration and radiation dose using combined small- and wide-angle X-ray scattering. It is shown that dehydration of the bone has a pronounced effect on the residual stress state of the crystalline phase, while the impact of radiation damage alone is less dramatic. In the initial hydrated state, a biaxial compressive stress of approximately −150MPa along the bone axis exists in the hydroxyapatite crystals. As water evaporates from the bone material, the stress state moves to a tensile state of approximately 100MPa. The collagen fibrillar structure is initially in a tensile residual stress state when the bone is hydrated and the state increases in magnitude slightly with dehydration. Radiation dose in continually hydrated samples also reduces the initial biaxial compressive stress magnitude in the hydroxyapatite phase; however, the stress remains compressive. Radiation exposure alone does not appear to affect the stress state of the collagen fibrillar structure.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2013.07.028</identifier><identifier>PMID: 23917041</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Bone and Bones - pathology ; Bone and Bones - radiation effects ; Cattle ; Collagen ; Dose-Response Relationship, Radiation ; Durapatite - chemistry ; Fibrillar Collagens - chemistry ; Hydration ; Hydroxyapatite ; Radiation damage ; Residual stress ; Scattering, Small Angle ; Stress, Mechanical ; Water - chemistry ; X-Ray Diffraction ; X-Rays</subject><ispartof>Acta biomaterialia, 2013-12, Vol.9 (12), p.9503-9507</ispartof><rights>2013 Acta Materialia Inc.</rights><rights>Copyright © 2013 Acta Materialia Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-d00bc211e2f8a5f84f95e20d9f6e69409cbdaa1aa27a1075bfa60981f5cdbddf3</citedby><cites>FETCH-LOGICAL-c428t-d00bc211e2f8a5f84f95e20d9f6e69409cbdaa1aa27a1075bfa60981f5cdbddf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2013.07.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23917041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tung, Patrick K.M.</creatorcontrib><creatorcontrib>Mudie, Stephen</creatorcontrib><creatorcontrib>Daniels, John E.</creatorcontrib><title>Hydration and radiation effects on the residual stress state of cortical bone</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>The change in the biaxial residual stress state of hydroxyapatite crystals and collagen fibrillar structure in sections of bovine cortical bone has been investigated as a function of dehydration and radiation dose using combined small- and wide-angle X-ray scattering. It is shown that dehydration of the bone has a pronounced effect on the residual stress state of the crystalline phase, while the impact of radiation damage alone is less dramatic. In the initial hydrated state, a biaxial compressive stress of approximately −150MPa along the bone axis exists in the hydroxyapatite crystals. As water evaporates from the bone material, the stress state moves to a tensile state of approximately 100MPa. The collagen fibrillar structure is initially in a tensile residual stress state when the bone is hydrated and the state increases in magnitude slightly with dehydration. Radiation dose in continually hydrated samples also reduces the initial biaxial compressive stress magnitude in the hydroxyapatite phase; however, the stress remains compressive. Radiation exposure alone does not appear to affect the stress state of the collagen fibrillar structure.</description><subject>Animals</subject><subject>Bone and Bones - pathology</subject><subject>Bone and Bones - radiation effects</subject><subject>Cattle</subject><subject>Collagen</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Durapatite - chemistry</subject><subject>Fibrillar Collagens - chemistry</subject><subject>Hydration</subject><subject>Hydroxyapatite</subject><subject>Radiation damage</subject><subject>Residual stress</subject><subject>Scattering, Small Angle</subject><subject>Stress, Mechanical</subject><subject>Water - chemistry</subject><subject>X-Ray Diffraction</subject><subject>X-Rays</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKBDEQRYMoPkb_QKSXbrqtpB9JNoKIL1Dc6DqkkwpmmOlokhH8eyM9unRVt6hbdalDyCmFhgIdLpaNNnn0oWFA2wZ4A0zskEMquKh5P4jdonnHag4DPSBHKS0BWkGZ2CcHrJWUQ0cPydP9l406-zBVerJV1NbPHTqHJqeqyPyGVcTk7UavqpSLTKXojFVwlQkxe1MGY5jwmOw5vUp4sq0L8np783J9Xz8-3z1cXz3WpmMi1xZgNIxSZE7o3onOyR4ZWOkGHGQH0oxWa6o145oC70enB5CCut7Y0VrXLsj5fPc9ho8NpqzWPhlcrfSEYZMU7TrJBtm3sli72WpiSCmiU-_Rr3X8UhTUD0i1VDNI9QNSAVcFZFk72yZsxjXav6VfcsVwORuw_PnpMapkPE4GrY8FnLLB_5_wDVhqhyE</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Tung, Patrick K.M.</creator><creator>Mudie, Stephen</creator><creator>Daniels, John E.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20131201</creationdate><title>Hydration and radiation effects on the residual stress state of cortical bone</title><author>Tung, Patrick K.M. ; Mudie, Stephen ; Daniels, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-d00bc211e2f8a5f84f95e20d9f6e69409cbdaa1aa27a1075bfa60981f5cdbddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Bone and Bones - pathology</topic><topic>Bone and Bones - radiation effects</topic><topic>Cattle</topic><topic>Collagen</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Durapatite - chemistry</topic><topic>Fibrillar Collagens - chemistry</topic><topic>Hydration</topic><topic>Hydroxyapatite</topic><topic>Radiation damage</topic><topic>Residual stress</topic><topic>Scattering, Small Angle</topic><topic>Stress, Mechanical</topic><topic>Water - chemistry</topic><topic>X-Ray Diffraction</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tung, Patrick K.M.</creatorcontrib><creatorcontrib>Mudie, Stephen</creatorcontrib><creatorcontrib>Daniels, John E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tung, Patrick K.M.</au><au>Mudie, Stephen</au><au>Daniels, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydration and radiation effects on the residual stress state of cortical bone</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>9</volume><issue>12</issue><spage>9503</spage><epage>9507</epage><pages>9503-9507</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>The change in the biaxial residual stress state of hydroxyapatite crystals and collagen fibrillar structure in sections of bovine cortical bone has been investigated as a function of dehydration and radiation dose using combined small- and wide-angle X-ray scattering. It is shown that dehydration of the bone has a pronounced effect on the residual stress state of the crystalline phase, while the impact of radiation damage alone is less dramatic. In the initial hydrated state, a biaxial compressive stress of approximately −150MPa along the bone axis exists in the hydroxyapatite crystals. As water evaporates from the bone material, the stress state moves to a tensile state of approximately 100MPa. The collagen fibrillar structure is initially in a tensile residual stress state when the bone is hydrated and the state increases in magnitude slightly with dehydration. Radiation dose in continually hydrated samples also reduces the initial biaxial compressive stress magnitude in the hydroxyapatite phase; however, the stress remains compressive. Radiation exposure alone does not appear to affect the stress state of the collagen fibrillar structure.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>23917041</pmid><doi>10.1016/j.actbio.2013.07.028</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2013-12, Vol.9 (12), p.9503-9507 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_1449269539 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Bone and Bones - pathology Bone and Bones - radiation effects Cattle Collagen Dose-Response Relationship, Radiation Durapatite - chemistry Fibrillar Collagens - chemistry Hydration Hydroxyapatite Radiation damage Residual stress Scattering, Small Angle Stress, Mechanical Water - chemistry X-Ray Diffraction X-Rays |
title | Hydration and radiation effects on the residual stress state of cortical bone |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydration%20and%20radiation%20effects%20on%20the%20residual%20stress%20state%20of%20cortical%20bone&rft.jtitle=Acta%20biomaterialia&rft.au=Tung,%20Patrick%20K.M.&rft.date=2013-12-01&rft.volume=9&rft.issue=12&rft.spage=9503&rft.epage=9507&rft.pages=9503-9507&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2013.07.028&rft_dat=%3Cproquest_cross%3E1449269539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449269539&rft_id=info:pmid/23917041&rft_els_id=S1742706113003760&rfr_iscdi=true |