Hydration and radiation effects on the residual stress state of cortical bone

The change in the biaxial residual stress state of hydroxyapatite crystals and collagen fibrillar structure in sections of bovine cortical bone has been investigated as a function of dehydration and radiation dose using combined small- and wide-angle X-ray scattering. It is shown that dehydration of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2013-12, Vol.9 (12), p.9503-9507
Hauptverfasser: Tung, Patrick K.M., Mudie, Stephen, Daniels, John E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9507
container_issue 12
container_start_page 9503
container_title Acta biomaterialia
container_volume 9
creator Tung, Patrick K.M.
Mudie, Stephen
Daniels, John E.
description The change in the biaxial residual stress state of hydroxyapatite crystals and collagen fibrillar structure in sections of bovine cortical bone has been investigated as a function of dehydration and radiation dose using combined small- and wide-angle X-ray scattering. It is shown that dehydration of the bone has a pronounced effect on the residual stress state of the crystalline phase, while the impact of radiation damage alone is less dramatic. In the initial hydrated state, a biaxial compressive stress of approximately −150MPa along the bone axis exists in the hydroxyapatite crystals. As water evaporates from the bone material, the stress state moves to a tensile state of approximately 100MPa. The collagen fibrillar structure is initially in a tensile residual stress state when the bone is hydrated and the state increases in magnitude slightly with dehydration. Radiation dose in continually hydrated samples also reduces the initial biaxial compressive stress magnitude in the hydroxyapatite phase; however, the stress remains compressive. Radiation exposure alone does not appear to affect the stress state of the collagen fibrillar structure.
doi_str_mv 10.1016/j.actbio.2013.07.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1449269539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706113003760</els_id><sourcerecordid>1449269539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-d00bc211e2f8a5f84f95e20d9f6e69409cbdaa1aa27a1075bfa60981f5cdbddf3</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRYMoPkb_QKSXbrqtpB9JNoKIL1Dc6DqkkwpmmOlokhH8eyM9unRVt6hbdalDyCmFhgIdLpaNNnn0oWFA2wZ4A0zskEMquKh5P4jdonnHag4DPSBHKS0BWkGZ2CcHrJWUQ0cPydP9l406-zBVerJV1NbPHTqHJqeqyPyGVcTk7UavqpSLTKXojFVwlQkxe1MGY5jwmOw5vUp4sq0L8np783J9Xz8-3z1cXz3WpmMi1xZgNIxSZE7o3onOyR4ZWOkGHGQH0oxWa6o145oC70enB5CCut7Y0VrXLsj5fPc9ho8NpqzWPhlcrfSEYZMU7TrJBtm3sli72WpiSCmiU-_Rr3X8UhTUD0i1VDNI9QNSAVcFZFk72yZsxjXav6VfcsVwORuw_PnpMapkPE4GrY8FnLLB_5_wDVhqhyE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449269539</pqid></control><display><type>article</type><title>Hydration and radiation effects on the residual stress state of cortical bone</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Tung, Patrick K.M. ; Mudie, Stephen ; Daniels, John E.</creator><creatorcontrib>Tung, Patrick K.M. ; Mudie, Stephen ; Daniels, John E.</creatorcontrib><description>The change in the biaxial residual stress state of hydroxyapatite crystals and collagen fibrillar structure in sections of bovine cortical bone has been investigated as a function of dehydration and radiation dose using combined small- and wide-angle X-ray scattering. It is shown that dehydration of the bone has a pronounced effect on the residual stress state of the crystalline phase, while the impact of radiation damage alone is less dramatic. In the initial hydrated state, a biaxial compressive stress of approximately −150MPa along the bone axis exists in the hydroxyapatite crystals. As water evaporates from the bone material, the stress state moves to a tensile state of approximately 100MPa. The collagen fibrillar structure is initially in a tensile residual stress state when the bone is hydrated and the state increases in magnitude slightly with dehydration. Radiation dose in continually hydrated samples also reduces the initial biaxial compressive stress magnitude in the hydroxyapatite phase; however, the stress remains compressive. Radiation exposure alone does not appear to affect the stress state of the collagen fibrillar structure.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2013.07.028</identifier><identifier>PMID: 23917041</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Bone and Bones - pathology ; Bone and Bones - radiation effects ; Cattle ; Collagen ; Dose-Response Relationship, Radiation ; Durapatite - chemistry ; Fibrillar Collagens - chemistry ; Hydration ; Hydroxyapatite ; Radiation damage ; Residual stress ; Scattering, Small Angle ; Stress, Mechanical ; Water - chemistry ; X-Ray Diffraction ; X-Rays</subject><ispartof>Acta biomaterialia, 2013-12, Vol.9 (12), p.9503-9507</ispartof><rights>2013 Acta Materialia Inc.</rights><rights>Copyright © 2013 Acta Materialia Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-d00bc211e2f8a5f84f95e20d9f6e69409cbdaa1aa27a1075bfa60981f5cdbddf3</citedby><cites>FETCH-LOGICAL-c428t-d00bc211e2f8a5f84f95e20d9f6e69409cbdaa1aa27a1075bfa60981f5cdbddf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2013.07.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23917041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tung, Patrick K.M.</creatorcontrib><creatorcontrib>Mudie, Stephen</creatorcontrib><creatorcontrib>Daniels, John E.</creatorcontrib><title>Hydration and radiation effects on the residual stress state of cortical bone</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>The change in the biaxial residual stress state of hydroxyapatite crystals and collagen fibrillar structure in sections of bovine cortical bone has been investigated as a function of dehydration and radiation dose using combined small- and wide-angle X-ray scattering. It is shown that dehydration of the bone has a pronounced effect on the residual stress state of the crystalline phase, while the impact of radiation damage alone is less dramatic. In the initial hydrated state, a biaxial compressive stress of approximately −150MPa along the bone axis exists in the hydroxyapatite crystals. As water evaporates from the bone material, the stress state moves to a tensile state of approximately 100MPa. The collagen fibrillar structure is initially in a tensile residual stress state when the bone is hydrated and the state increases in magnitude slightly with dehydration. Radiation dose in continually hydrated samples also reduces the initial biaxial compressive stress magnitude in the hydroxyapatite phase; however, the stress remains compressive. Radiation exposure alone does not appear to affect the stress state of the collagen fibrillar structure.</description><subject>Animals</subject><subject>Bone and Bones - pathology</subject><subject>Bone and Bones - radiation effects</subject><subject>Cattle</subject><subject>Collagen</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Durapatite - chemistry</subject><subject>Fibrillar Collagens - chemistry</subject><subject>Hydration</subject><subject>Hydroxyapatite</subject><subject>Radiation damage</subject><subject>Residual stress</subject><subject>Scattering, Small Angle</subject><subject>Stress, Mechanical</subject><subject>Water - chemistry</subject><subject>X-Ray Diffraction</subject><subject>X-Rays</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKBDEQRYMoPkb_QKSXbrqtpB9JNoKIL1Dc6DqkkwpmmOlokhH8eyM9unRVt6hbdalDyCmFhgIdLpaNNnn0oWFA2wZ4A0zskEMquKh5P4jdonnHag4DPSBHKS0BWkGZ2CcHrJWUQ0cPydP9l406-zBVerJV1NbPHTqHJqeqyPyGVcTk7UavqpSLTKXojFVwlQkxe1MGY5jwmOw5vUp4sq0L8np783J9Xz8-3z1cXz3WpmMi1xZgNIxSZE7o3onOyR4ZWOkGHGQH0oxWa6o145oC70enB5CCut7Y0VrXLsj5fPc9ho8NpqzWPhlcrfSEYZMU7TrJBtm3sli72WpiSCmiU-_Rr3X8UhTUD0i1VDNI9QNSAVcFZFk72yZsxjXav6VfcsVwORuw_PnpMapkPE4GrY8FnLLB_5_wDVhqhyE</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Tung, Patrick K.M.</creator><creator>Mudie, Stephen</creator><creator>Daniels, John E.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20131201</creationdate><title>Hydration and radiation effects on the residual stress state of cortical bone</title><author>Tung, Patrick K.M. ; Mudie, Stephen ; Daniels, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-d00bc211e2f8a5f84f95e20d9f6e69409cbdaa1aa27a1075bfa60981f5cdbddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Bone and Bones - pathology</topic><topic>Bone and Bones - radiation effects</topic><topic>Cattle</topic><topic>Collagen</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Durapatite - chemistry</topic><topic>Fibrillar Collagens - chemistry</topic><topic>Hydration</topic><topic>Hydroxyapatite</topic><topic>Radiation damage</topic><topic>Residual stress</topic><topic>Scattering, Small Angle</topic><topic>Stress, Mechanical</topic><topic>Water - chemistry</topic><topic>X-Ray Diffraction</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tung, Patrick K.M.</creatorcontrib><creatorcontrib>Mudie, Stephen</creatorcontrib><creatorcontrib>Daniels, John E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tung, Patrick K.M.</au><au>Mudie, Stephen</au><au>Daniels, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydration and radiation effects on the residual stress state of cortical bone</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>9</volume><issue>12</issue><spage>9503</spage><epage>9507</epage><pages>9503-9507</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>The change in the biaxial residual stress state of hydroxyapatite crystals and collagen fibrillar structure in sections of bovine cortical bone has been investigated as a function of dehydration and radiation dose using combined small- and wide-angle X-ray scattering. It is shown that dehydration of the bone has a pronounced effect on the residual stress state of the crystalline phase, while the impact of radiation damage alone is less dramatic. In the initial hydrated state, a biaxial compressive stress of approximately −150MPa along the bone axis exists in the hydroxyapatite crystals. As water evaporates from the bone material, the stress state moves to a tensile state of approximately 100MPa. The collagen fibrillar structure is initially in a tensile residual stress state when the bone is hydrated and the state increases in magnitude slightly with dehydration. Radiation dose in continually hydrated samples also reduces the initial biaxial compressive stress magnitude in the hydroxyapatite phase; however, the stress remains compressive. Radiation exposure alone does not appear to affect the stress state of the collagen fibrillar structure.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>23917041</pmid><doi>10.1016/j.actbio.2013.07.028</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2013-12, Vol.9 (12), p.9503-9507
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_1449269539
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Bone and Bones - pathology
Bone and Bones - radiation effects
Cattle
Collagen
Dose-Response Relationship, Radiation
Durapatite - chemistry
Fibrillar Collagens - chemistry
Hydration
Hydroxyapatite
Radiation damage
Residual stress
Scattering, Small Angle
Stress, Mechanical
Water - chemistry
X-Ray Diffraction
X-Rays
title Hydration and radiation effects on the residual stress state of cortical bone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydration%20and%20radiation%20effects%20on%20the%20residual%20stress%20state%20of%20cortical%20bone&rft.jtitle=Acta%20biomaterialia&rft.au=Tung,%20Patrick%20K.M.&rft.date=2013-12-01&rft.volume=9&rft.issue=12&rft.spage=9503&rft.epage=9507&rft.pages=9503-9507&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2013.07.028&rft_dat=%3Cproquest_cross%3E1449269539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449269539&rft_id=info:pmid/23917041&rft_els_id=S1742706113003760&rfr_iscdi=true