Behavioral and Physiological Neural Network Analyses: A Common Pathway Toward Pattern Recognition and Prediction
Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Mac...
Gespeichert in:
Veröffentlicht in: | The Psychological record 2012-10, Vol.62 (4), p.579-598 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 598 |
---|---|
container_issue | 4 |
container_start_page | 579 |
container_title | The Psychological record |
container_volume | 62 |
creator | Ninness, Chris Lauter, Judy L. Coffee, Michael Clary, Logan Kelly, Elizabeth Rumph, Marilyn Rumph, Robin Kyle, Betty Ninness, Sharon K. |
description | Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository. Data for this study were composed of votes for each U.S. Representative on 16 key items during a particular legislative session. Experiment 2 employed a dataset developed in our human neuroscience laboratory and focused on the effects of sympathetic nervous system arousal on cardiac and inner-ear physiology. Experiment 3 employed the well-known Wisconsin Breast Cancer dataset, which was used to develop a sensitive, automated diagnostic method of distinguishing between malignant and benign cells. We suggest that the SOM is capable of identifying cohesive patterns of nonlinear measurements that would be difficult to identify using traditional linear data reduction procedures and that neural networks will be increasingly valuable in the analysis of a wide range of complex behaviors. |
doi_str_mv | 10.1007/BF03395822 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1449095763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A309590745</galeid><ericid>EJ1002963</ericid><sourcerecordid>A309590745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-a9e05e2b4959fdd266ee7adcf7025d9b80b8beb973eb2b95119494fabc7e0d933</originalsourceid><addsrcrecordid>eNptkk1rGzEQhkVoIW7aS-6BhV5KyrqSVvJavdkmzgehDSU9L1ppdq1kV3KkdYz_fbV2yFeNDsPMPPMOrxiEjgkeEozzH9M5zjLBx5QeoAEloyzNGKcf0ADHekpFlh2iTyHcYYwJw_kALaewkI_Gedkk0urkZrEJxjWuNipWfsHKb0O3dv4-mVjZbAKEn8kkmbm2dTa5kd1iLTfJrVtLr_u0A2-TP6BcbU1nIrKV9aCN6tPP6GMlmwBfnuIR-js_u51dpNe_zy9nk-tUMc67VArAHGjJBBeV1nQ0AsilVlWOKdeiHONyXEIp8gxKWgpOiGCCVbJUOWAdfR6hbzvdpXcPKwhd0ZqgoGmkBbcKBWFMYMHzUY9-fYfeuZWPXiNFuGB8zOKeZ6qWDRTGVq7zUvWixSSLSgLnjEcq3UPVYCF-pLNQmVh-ww_38PFpaI3aO3C6G1DeheChKpbetNJvCoKL_gaKlxuI8MkOBm_UM3h2FTkqts6_7_oh9mwN_pXz_9X-AT5iuSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1159458497</pqid></control><display><type>article</type><title>Behavioral and Physiological Neural Network Analyses: A Common Pathway Toward Pattern Recognition and Prediction</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>Education Source</source><source>SpringerLink Journals</source><source>EBSCOhost Business Source Complete</source><creator>Ninness, Chris ; Lauter, Judy L. ; Coffee, Michael ; Clary, Logan ; Kelly, Elizabeth ; Rumph, Marilyn ; Rumph, Robin ; Kyle, Betty ; Ninness, Sharon K.</creator><creatorcontrib>Ninness, Chris ; Lauter, Judy L. ; Coffee, Michael ; Clary, Logan ; Kelly, Elizabeth ; Rumph, Marilyn ; Rumph, Robin ; Kyle, Betty ; Ninness, Sharon K.</creatorcontrib><description>Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository. Data for this study were composed of votes for each U.S. Representative on 16 key items during a particular legislative session. Experiment 2 employed a dataset developed in our human neuroscience laboratory and focused on the effects of sympathetic nervous system arousal on cardiac and inner-ear physiology. Experiment 3 employed the well-known Wisconsin Breast Cancer dataset, which was used to develop a sensitive, automated diagnostic method of distinguishing between malignant and benign cells. We suggest that the SOM is capable of identifying cohesive patterns of nonlinear measurements that would be difficult to identify using traditional linear data reduction procedures and that neural networks will be increasingly valuable in the analysis of a wide range of complex behaviors.</description><identifier>ISSN: 0033-2933</identifier><identifier>EISSN: 2163-3452</identifier><identifier>DOI: 10.1007/BF03395822</identifier><identifier>CODEN: PYRCAI</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Anatomy ; Behavior ; Behavioral Science and Psychology ; Behavioral Science Research ; Behavioral Sciences ; Body Weight ; Brain Hemisphere Functions ; Cancer ; Computational biology ; Computer Software ; Data Analysis ; Data mining ; Diagnostic Tests ; Evidence ; Experiments ; Factor Analysis ; Indictments ; Laboratories ; Language Processing ; Learning ; Measurement ; Networks ; Neural networks ; Neurosciences ; Nonlinear ; Pattern Recognition ; Physiology ; Prediction ; Principal components analysis ; Principals ; Psychology ; Psychophysiology ; R&D ; Raw Scores ; Research & development ; Research Methodology ; Researchers ; Scientific Research ; Software ; Statistical Analysis ; Studies ; Technological change</subject><ispartof>The Psychological record, 2012-10, Vol.62 (4), p.579-598</ispartof><rights>Association of Behavior Analysis International 2012</rights><rights>COPYRIGHT 2012 The Association for Behavior Analysis International</rights><rights>Copyright The Psychological Record Fall 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-a9e05e2b4959fdd266ee7adcf7025d9b80b8beb973eb2b95119494fabc7e0d933</citedby><cites>FETCH-LOGICAL-c455t-a9e05e2b4959fdd266ee7adcf7025d9b80b8beb973eb2b95119494fabc7e0d933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BF03395822$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BF03395822$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,12825,27901,27902,30976,30977,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1002963$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Ninness, Chris</creatorcontrib><creatorcontrib>Lauter, Judy L.</creatorcontrib><creatorcontrib>Coffee, Michael</creatorcontrib><creatorcontrib>Clary, Logan</creatorcontrib><creatorcontrib>Kelly, Elizabeth</creatorcontrib><creatorcontrib>Rumph, Marilyn</creatorcontrib><creatorcontrib>Rumph, Robin</creatorcontrib><creatorcontrib>Kyle, Betty</creatorcontrib><creatorcontrib>Ninness, Sharon K.</creatorcontrib><title>Behavioral and Physiological Neural Network Analyses: A Common Pathway Toward Pattern Recognition and Prediction</title><title>The Psychological record</title><addtitle>Psychol Rec</addtitle><description>Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository. Data for this study were composed of votes for each U.S. Representative on 16 key items during a particular legislative session. Experiment 2 employed a dataset developed in our human neuroscience laboratory and focused on the effects of sympathetic nervous system arousal on cardiac and inner-ear physiology. Experiment 3 employed the well-known Wisconsin Breast Cancer dataset, which was used to develop a sensitive, automated diagnostic method of distinguishing between malignant and benign cells. We suggest that the SOM is capable of identifying cohesive patterns of nonlinear measurements that would be difficult to identify using traditional linear data reduction procedures and that neural networks will be increasingly valuable in the analysis of a wide range of complex behaviors.</description><subject>Algorithms</subject><subject>Anatomy</subject><subject>Behavior</subject><subject>Behavioral Science and Psychology</subject><subject>Behavioral Science Research</subject><subject>Behavioral Sciences</subject><subject>Body Weight</subject><subject>Brain Hemisphere Functions</subject><subject>Cancer</subject><subject>Computational biology</subject><subject>Computer Software</subject><subject>Data Analysis</subject><subject>Data mining</subject><subject>Diagnostic Tests</subject><subject>Evidence</subject><subject>Experiments</subject><subject>Factor Analysis</subject><subject>Indictments</subject><subject>Laboratories</subject><subject>Language Processing</subject><subject>Learning</subject><subject>Measurement</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Neurosciences</subject><subject>Nonlinear</subject><subject>Pattern Recognition</subject><subject>Physiology</subject><subject>Prediction</subject><subject>Principal components analysis</subject><subject>Principals</subject><subject>Psychology</subject><subject>Psychophysiology</subject><subject>R&D</subject><subject>Raw Scores</subject><subject>Research & development</subject><subject>Research Methodology</subject><subject>Researchers</subject><subject>Scientific Research</subject><subject>Software</subject><subject>Statistical Analysis</subject><subject>Studies</subject><subject>Technological change</subject><issn>0033-2933</issn><issn>2163-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkk1rGzEQhkVoIW7aS-6BhV5KyrqSVvJavdkmzgehDSU9L1ppdq1kV3KkdYz_fbV2yFeNDsPMPPMOrxiEjgkeEozzH9M5zjLBx5QeoAEloyzNGKcf0ADHekpFlh2iTyHcYYwJw_kALaewkI_Gedkk0urkZrEJxjWuNipWfsHKb0O3dv4-mVjZbAKEn8kkmbm2dTa5kd1iLTfJrVtLr_u0A2-TP6BcbU1nIrKV9aCN6tPP6GMlmwBfnuIR-js_u51dpNe_zy9nk-tUMc67VArAHGjJBBeV1nQ0AsilVlWOKdeiHONyXEIp8gxKWgpOiGCCVbJUOWAdfR6hbzvdpXcPKwhd0ZqgoGmkBbcKBWFMYMHzUY9-fYfeuZWPXiNFuGB8zOKeZ6qWDRTGVq7zUvWixSSLSgLnjEcq3UPVYCF-pLNQmVh-ww_38PFpaI3aO3C6G1DeheChKpbetNJvCoKL_gaKlxuI8MkOBm_UM3h2FTkqts6_7_oh9mwN_pXz_9X-AT5iuSA</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Ninness, Chris</creator><creator>Lauter, Judy L.</creator><creator>Coffee, Michael</creator><creator>Clary, Logan</creator><creator>Kelly, Elizabeth</creator><creator>Rumph, Marilyn</creator><creator>Rumph, Robin</creator><creator>Kyle, Betty</creator><creator>Ninness, Sharon K.</creator><general>Springer International Publishing</general><general>Southern Illinois University Carbondale</general><general>The Association for Behavior Analysis International</general><general>Springer Nature B.V</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>4U-</scope><scope>7QJ</scope><scope>7XB</scope><scope>88B</scope><scope>88G</scope><scope>88I</scope><scope>88J</scope><scope>8AF</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>HEHIP</scope><scope>M0P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M2R</scope><scope>M2S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20121001</creationdate><title>Behavioral and Physiological Neural Network Analyses: A Common Pathway Toward Pattern Recognition and Prediction</title><author>Ninness, Chris ; Lauter, Judy L. ; Coffee, Michael ; Clary, Logan ; Kelly, Elizabeth ; Rumph, Marilyn ; Rumph, Robin ; Kyle, Betty ; Ninness, Sharon K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-a9e05e2b4959fdd266ee7adcf7025d9b80b8beb973eb2b95119494fabc7e0d933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Anatomy</topic><topic>Behavior</topic><topic>Behavioral Science and Psychology</topic><topic>Behavioral Science Research</topic><topic>Behavioral Sciences</topic><topic>Body Weight</topic><topic>Brain Hemisphere Functions</topic><topic>Cancer</topic><topic>Computational biology</topic><topic>Computer Software</topic><topic>Data Analysis</topic><topic>Data mining</topic><topic>Diagnostic Tests</topic><topic>Evidence</topic><topic>Experiments</topic><topic>Factor Analysis</topic><topic>Indictments</topic><topic>Laboratories</topic><topic>Language Processing</topic><topic>Learning</topic><topic>Measurement</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Neurosciences</topic><topic>Nonlinear</topic><topic>Pattern Recognition</topic><topic>Physiology</topic><topic>Prediction</topic><topic>Principal components analysis</topic><topic>Principals</topic><topic>Psychology</topic><topic>Psychophysiology</topic><topic>R&D</topic><topic>Raw Scores</topic><topic>Research & development</topic><topic>Research Methodology</topic><topic>Researchers</topic><topic>Scientific Research</topic><topic>Software</topic><topic>Statistical Analysis</topic><topic>Studies</topic><topic>Technological change</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ninness, Chris</creatorcontrib><creatorcontrib>Lauter, Judy L.</creatorcontrib><creatorcontrib>Coffee, Michael</creatorcontrib><creatorcontrib>Clary, Logan</creatorcontrib><creatorcontrib>Kelly, Elizabeth</creatorcontrib><creatorcontrib>Rumph, Marilyn</creatorcontrib><creatorcontrib>Rumph, Robin</creatorcontrib><creatorcontrib>Kyle, Betty</creatorcontrib><creatorcontrib>Ninness, Sharon K.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>University Readers</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Sociology Collection</collection><collection>Education Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Social Science Database</collection><collection>Sociology Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The Psychological record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ninness, Chris</au><au>Lauter, Judy L.</au><au>Coffee, Michael</au><au>Clary, Logan</au><au>Kelly, Elizabeth</au><au>Rumph, Marilyn</au><au>Rumph, Robin</au><au>Kyle, Betty</au><au>Ninness, Sharon K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1002963</ericid><atitle>Behavioral and Physiological Neural Network Analyses: A Common Pathway Toward Pattern Recognition and Prediction</atitle><jtitle>The Psychological record</jtitle><stitle>Psychol Rec</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>62</volume><issue>4</issue><spage>579</spage><epage>598</epage><pages>579-598</pages><issn>0033-2933</issn><eissn>2163-3452</eissn><coden>PYRCAI</coden><abstract>Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository. Data for this study were composed of votes for each U.S. Representative on 16 key items during a particular legislative session. Experiment 2 employed a dataset developed in our human neuroscience laboratory and focused on the effects of sympathetic nervous system arousal on cardiac and inner-ear physiology. Experiment 3 employed the well-known Wisconsin Breast Cancer dataset, which was used to develop a sensitive, automated diagnostic method of distinguishing between malignant and benign cells. We suggest that the SOM is capable of identifying cohesive patterns of nonlinear measurements that would be difficult to identify using traditional linear data reduction procedures and that neural networks will be increasingly valuable in the analysis of a wide range of complex behaviors.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/BF03395822</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-2933 |
ispartof | The Psychological record, 2012-10, Vol.62 (4), p.579-598 |
issn | 0033-2933 2163-3452 |
language | eng |
recordid | cdi_proquest_miscellaneous_1449095763 |
source | Applied Social Sciences Index & Abstracts (ASSIA); Education Source; SpringerLink Journals; EBSCOhost Business Source Complete |
subjects | Algorithms Anatomy Behavior Behavioral Science and Psychology Behavioral Science Research Behavioral Sciences Body Weight Brain Hemisphere Functions Cancer Computational biology Computer Software Data Analysis Data mining Diagnostic Tests Evidence Experiments Factor Analysis Indictments Laboratories Language Processing Learning Measurement Networks Neural networks Neurosciences Nonlinear Pattern Recognition Physiology Prediction Principal components analysis Principals Psychology Psychophysiology R&D Raw Scores Research & development Research Methodology Researchers Scientific Research Software Statistical Analysis Studies Technological change |
title | Behavioral and Physiological Neural Network Analyses: A Common Pathway Toward Pattern Recognition and Prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavioral%20and%20Physiological%20Neural%20Network%20Analyses:%20A%20Common%20Pathway%20Toward%20Pattern%20Recognition%20and%20Prediction&rft.jtitle=The%20Psychological%20record&rft.au=Ninness,%20Chris&rft.date=2012-10-01&rft.volume=62&rft.issue=4&rft.spage=579&rft.epage=598&rft.pages=579-598&rft.issn=0033-2933&rft.eissn=2163-3452&rft.coden=PYRCAI&rft_id=info:doi/10.1007/BF03395822&rft_dat=%3Cgale_proqu%3EA309590745%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1159458497&rft_id=info:pmid/&rft_galeid=A309590745&rft_ericid=EJ1002963&rfr_iscdi=true |