Behavioral and Physiological Neural Network Analyses: A Common Pathway Toward Pattern Recognition and Prediction

Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Mac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Psychological record 2012-10, Vol.62 (4), p.579-598
Hauptverfasser: Ninness, Chris, Lauter, Judy L., Coffee, Michael, Clary, Logan, Kelly, Elizabeth, Rumph, Marilyn, Rumph, Robin, Kyle, Betty, Ninness, Sharon K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 598
container_issue 4
container_start_page 579
container_title The Psychological record
container_volume 62
creator Ninness, Chris
Lauter, Judy L.
Coffee, Michael
Clary, Logan
Kelly, Elizabeth
Rumph, Marilyn
Rumph, Robin
Kyle, Betty
Ninness, Sharon K.
description Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository. Data for this study were composed of votes for each U.S. Representative on 16 key items during a particular legislative session. Experiment 2 employed a dataset developed in our human neuroscience laboratory and focused on the effects of sympathetic nervous system arousal on cardiac and inner-ear physiology. Experiment 3 employed the well-known Wisconsin Breast Cancer dataset, which was used to develop a sensitive, automated diagnostic method of distinguishing between malignant and benign cells. We suggest that the SOM is capable of identifying cohesive patterns of nonlinear measurements that would be difficult to identify using traditional linear data reduction procedures and that neural networks will be increasingly valuable in the analysis of a wide range of complex behaviors.
doi_str_mv 10.1007/BF03395822
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1449095763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A309590745</galeid><ericid>EJ1002963</ericid><sourcerecordid>A309590745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-a9e05e2b4959fdd266ee7adcf7025d9b80b8beb973eb2b95119494fabc7e0d933</originalsourceid><addsrcrecordid>eNptkk1rGzEQhkVoIW7aS-6BhV5KyrqSVvJavdkmzgehDSU9L1ppdq1kV3KkdYz_fbV2yFeNDsPMPPMOrxiEjgkeEozzH9M5zjLBx5QeoAEloyzNGKcf0ADHekpFlh2iTyHcYYwJw_kALaewkI_Gedkk0urkZrEJxjWuNipWfsHKb0O3dv4-mVjZbAKEn8kkmbm2dTa5kd1iLTfJrVtLr_u0A2-TP6BcbU1nIrKV9aCN6tPP6GMlmwBfnuIR-js_u51dpNe_zy9nk-tUMc67VArAHGjJBBeV1nQ0AsilVlWOKdeiHONyXEIp8gxKWgpOiGCCVbJUOWAdfR6hbzvdpXcPKwhd0ZqgoGmkBbcKBWFMYMHzUY9-fYfeuZWPXiNFuGB8zOKeZ6qWDRTGVq7zUvWixSSLSgLnjEcq3UPVYCF-pLNQmVh-ww_38PFpaI3aO3C6G1DeheChKpbetNJvCoKL_gaKlxuI8MkOBm_UM3h2FTkqts6_7_oh9mwN_pXz_9X-AT5iuSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1159458497</pqid></control><display><type>article</type><title>Behavioral and Physiological Neural Network Analyses: A Common Pathway Toward Pattern Recognition and Prediction</title><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><source>Education Source</source><source>SpringerLink Journals</source><source>EBSCOhost Business Source Complete</source><creator>Ninness, Chris ; Lauter, Judy L. ; Coffee, Michael ; Clary, Logan ; Kelly, Elizabeth ; Rumph, Marilyn ; Rumph, Robin ; Kyle, Betty ; Ninness, Sharon K.</creator><creatorcontrib>Ninness, Chris ; Lauter, Judy L. ; Coffee, Michael ; Clary, Logan ; Kelly, Elizabeth ; Rumph, Marilyn ; Rumph, Robin ; Kyle, Betty ; Ninness, Sharon K.</creatorcontrib><description>Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository. Data for this study were composed of votes for each U.S. Representative on 16 key items during a particular legislative session. Experiment 2 employed a dataset developed in our human neuroscience laboratory and focused on the effects of sympathetic nervous system arousal on cardiac and inner-ear physiology. Experiment 3 employed the well-known Wisconsin Breast Cancer dataset, which was used to develop a sensitive, automated diagnostic method of distinguishing between malignant and benign cells. We suggest that the SOM is capable of identifying cohesive patterns of nonlinear measurements that would be difficult to identify using traditional linear data reduction procedures and that neural networks will be increasingly valuable in the analysis of a wide range of complex behaviors.</description><identifier>ISSN: 0033-2933</identifier><identifier>EISSN: 2163-3452</identifier><identifier>DOI: 10.1007/BF03395822</identifier><identifier>CODEN: PYRCAI</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Anatomy ; Behavior ; Behavioral Science and Psychology ; Behavioral Science Research ; Behavioral Sciences ; Body Weight ; Brain Hemisphere Functions ; Cancer ; Computational biology ; Computer Software ; Data Analysis ; Data mining ; Diagnostic Tests ; Evidence ; Experiments ; Factor Analysis ; Indictments ; Laboratories ; Language Processing ; Learning ; Measurement ; Networks ; Neural networks ; Neurosciences ; Nonlinear ; Pattern Recognition ; Physiology ; Prediction ; Principal components analysis ; Principals ; Psychology ; Psychophysiology ; R&amp;D ; Raw Scores ; Research &amp; development ; Research Methodology ; Researchers ; Scientific Research ; Software ; Statistical Analysis ; Studies ; Technological change</subject><ispartof>The Psychological record, 2012-10, Vol.62 (4), p.579-598</ispartof><rights>Association of Behavior Analysis International 2012</rights><rights>COPYRIGHT 2012 The Association for Behavior Analysis International</rights><rights>Copyright The Psychological Record Fall 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-a9e05e2b4959fdd266ee7adcf7025d9b80b8beb973eb2b95119494fabc7e0d933</citedby><cites>FETCH-LOGICAL-c455t-a9e05e2b4959fdd266ee7adcf7025d9b80b8beb973eb2b95119494fabc7e0d933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BF03395822$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BF03395822$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,12825,27901,27902,30976,30977,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1002963$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Ninness, Chris</creatorcontrib><creatorcontrib>Lauter, Judy L.</creatorcontrib><creatorcontrib>Coffee, Michael</creatorcontrib><creatorcontrib>Clary, Logan</creatorcontrib><creatorcontrib>Kelly, Elizabeth</creatorcontrib><creatorcontrib>Rumph, Marilyn</creatorcontrib><creatorcontrib>Rumph, Robin</creatorcontrib><creatorcontrib>Kyle, Betty</creatorcontrib><creatorcontrib>Ninness, Sharon K.</creatorcontrib><title>Behavioral and Physiological Neural Network Analyses: A Common Pathway Toward Pattern Recognition and Prediction</title><title>The Psychological record</title><addtitle>Psychol Rec</addtitle><description>Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository. Data for this study were composed of votes for each U.S. Representative on 16 key items during a particular legislative session. Experiment 2 employed a dataset developed in our human neuroscience laboratory and focused on the effects of sympathetic nervous system arousal on cardiac and inner-ear physiology. Experiment 3 employed the well-known Wisconsin Breast Cancer dataset, which was used to develop a sensitive, automated diagnostic method of distinguishing between malignant and benign cells. We suggest that the SOM is capable of identifying cohesive patterns of nonlinear measurements that would be difficult to identify using traditional linear data reduction procedures and that neural networks will be increasingly valuable in the analysis of a wide range of complex behaviors.</description><subject>Algorithms</subject><subject>Anatomy</subject><subject>Behavior</subject><subject>Behavioral Science and Psychology</subject><subject>Behavioral Science Research</subject><subject>Behavioral Sciences</subject><subject>Body Weight</subject><subject>Brain Hemisphere Functions</subject><subject>Cancer</subject><subject>Computational biology</subject><subject>Computer Software</subject><subject>Data Analysis</subject><subject>Data mining</subject><subject>Diagnostic Tests</subject><subject>Evidence</subject><subject>Experiments</subject><subject>Factor Analysis</subject><subject>Indictments</subject><subject>Laboratories</subject><subject>Language Processing</subject><subject>Learning</subject><subject>Measurement</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Neurosciences</subject><subject>Nonlinear</subject><subject>Pattern Recognition</subject><subject>Physiology</subject><subject>Prediction</subject><subject>Principal components analysis</subject><subject>Principals</subject><subject>Psychology</subject><subject>Psychophysiology</subject><subject>R&amp;D</subject><subject>Raw Scores</subject><subject>Research &amp; development</subject><subject>Research Methodology</subject><subject>Researchers</subject><subject>Scientific Research</subject><subject>Software</subject><subject>Statistical Analysis</subject><subject>Studies</subject><subject>Technological change</subject><issn>0033-2933</issn><issn>2163-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>7QJ</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkk1rGzEQhkVoIW7aS-6BhV5KyrqSVvJavdkmzgehDSU9L1ppdq1kV3KkdYz_fbV2yFeNDsPMPPMOrxiEjgkeEozzH9M5zjLBx5QeoAEloyzNGKcf0ADHekpFlh2iTyHcYYwJw_kALaewkI_Gedkk0urkZrEJxjWuNipWfsHKb0O3dv4-mVjZbAKEn8kkmbm2dTa5kd1iLTfJrVtLr_u0A2-TP6BcbU1nIrKV9aCN6tPP6GMlmwBfnuIR-js_u51dpNe_zy9nk-tUMc67VArAHGjJBBeV1nQ0AsilVlWOKdeiHONyXEIp8gxKWgpOiGCCVbJUOWAdfR6hbzvdpXcPKwhd0ZqgoGmkBbcKBWFMYMHzUY9-fYfeuZWPXiNFuGB8zOKeZ6qWDRTGVq7zUvWixSSLSgLnjEcq3UPVYCF-pLNQmVh-ww_38PFpaI3aO3C6G1DeheChKpbetNJvCoKL_gaKlxuI8MkOBm_UM3h2FTkqts6_7_oh9mwN_pXz_9X-AT5iuSA</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Ninness, Chris</creator><creator>Lauter, Judy L.</creator><creator>Coffee, Michael</creator><creator>Clary, Logan</creator><creator>Kelly, Elizabeth</creator><creator>Rumph, Marilyn</creator><creator>Rumph, Robin</creator><creator>Kyle, Betty</creator><creator>Ninness, Sharon K.</creator><general>Springer International Publishing</general><general>Southern Illinois University Carbondale</general><general>The Association for Behavior Analysis International</general><general>Springer Nature B.V</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>4U-</scope><scope>7QJ</scope><scope>7XB</scope><scope>88B</scope><scope>88G</scope><scope>88I</scope><scope>88J</scope><scope>8AF</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>HEHIP</scope><scope>M0P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M2R</scope><scope>M2S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20121001</creationdate><title>Behavioral and Physiological Neural Network Analyses: A Common Pathway Toward Pattern Recognition and Prediction</title><author>Ninness, Chris ; Lauter, Judy L. ; Coffee, Michael ; Clary, Logan ; Kelly, Elizabeth ; Rumph, Marilyn ; Rumph, Robin ; Kyle, Betty ; Ninness, Sharon K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-a9e05e2b4959fdd266ee7adcf7025d9b80b8beb973eb2b95119494fabc7e0d933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Anatomy</topic><topic>Behavior</topic><topic>Behavioral Science and Psychology</topic><topic>Behavioral Science Research</topic><topic>Behavioral Sciences</topic><topic>Body Weight</topic><topic>Brain Hemisphere Functions</topic><topic>Cancer</topic><topic>Computational biology</topic><topic>Computer Software</topic><topic>Data Analysis</topic><topic>Data mining</topic><topic>Diagnostic Tests</topic><topic>Evidence</topic><topic>Experiments</topic><topic>Factor Analysis</topic><topic>Indictments</topic><topic>Laboratories</topic><topic>Language Processing</topic><topic>Learning</topic><topic>Measurement</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Neurosciences</topic><topic>Nonlinear</topic><topic>Pattern Recognition</topic><topic>Physiology</topic><topic>Prediction</topic><topic>Principal components analysis</topic><topic>Principals</topic><topic>Psychology</topic><topic>Psychophysiology</topic><topic>R&amp;D</topic><topic>Raw Scores</topic><topic>Research &amp; development</topic><topic>Research Methodology</topic><topic>Researchers</topic><topic>Scientific Research</topic><topic>Software</topic><topic>Statistical Analysis</topic><topic>Studies</topic><topic>Technological change</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ninness, Chris</creatorcontrib><creatorcontrib>Lauter, Judy L.</creatorcontrib><creatorcontrib>Coffee, Michael</creatorcontrib><creatorcontrib>Clary, Logan</creatorcontrib><creatorcontrib>Kelly, Elizabeth</creatorcontrib><creatorcontrib>Rumph, Marilyn</creatorcontrib><creatorcontrib>Rumph, Robin</creatorcontrib><creatorcontrib>Kyle, Betty</creatorcontrib><creatorcontrib>Ninness, Sharon K.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>University Readers</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Sociology Collection</collection><collection>Education Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Social Science Database</collection><collection>Sociology Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The Psychological record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ninness, Chris</au><au>Lauter, Judy L.</au><au>Coffee, Michael</au><au>Clary, Logan</au><au>Kelly, Elizabeth</au><au>Rumph, Marilyn</au><au>Rumph, Robin</au><au>Kyle, Betty</au><au>Ninness, Sharon K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1002963</ericid><atitle>Behavioral and Physiological Neural Network Analyses: A Common Pathway Toward Pattern Recognition and Prediction</atitle><jtitle>The Psychological record</jtitle><stitle>Psychol Rec</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>62</volume><issue>4</issue><spage>579</spage><epage>598</epage><pages>579-598</pages><issn>0033-2933</issn><eissn>2163-3452</eissn><coden>PYRCAI</coden><abstract>Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository. Data for this study were composed of votes for each U.S. Representative on 16 key items during a particular legislative session. Experiment 2 employed a dataset developed in our human neuroscience laboratory and focused on the effects of sympathetic nervous system arousal on cardiac and inner-ear physiology. Experiment 3 employed the well-known Wisconsin Breast Cancer dataset, which was used to develop a sensitive, automated diagnostic method of distinguishing between malignant and benign cells. We suggest that the SOM is capable of identifying cohesive patterns of nonlinear measurements that would be difficult to identify using traditional linear data reduction procedures and that neural networks will be increasingly valuable in the analysis of a wide range of complex behaviors.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/BF03395822</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-2933
ispartof The Psychological record, 2012-10, Vol.62 (4), p.579-598
issn 0033-2933
2163-3452
language eng
recordid cdi_proquest_miscellaneous_1449095763
source Applied Social Sciences Index & Abstracts (ASSIA); Education Source; SpringerLink Journals; EBSCOhost Business Source Complete
subjects Algorithms
Anatomy
Behavior
Behavioral Science and Psychology
Behavioral Science Research
Behavioral Sciences
Body Weight
Brain Hemisphere Functions
Cancer
Computational biology
Computer Software
Data Analysis
Data mining
Diagnostic Tests
Evidence
Experiments
Factor Analysis
Indictments
Laboratories
Language Processing
Learning
Measurement
Networks
Neural networks
Neurosciences
Nonlinear
Pattern Recognition
Physiology
Prediction
Principal components analysis
Principals
Psychology
Psychophysiology
R&D
Raw Scores
Research & development
Research Methodology
Researchers
Scientific Research
Software
Statistical Analysis
Studies
Technological change
title Behavioral and Physiological Neural Network Analyses: A Common Pathway Toward Pattern Recognition and Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavioral%20and%20Physiological%20Neural%20Network%20Analyses:%20A%20Common%20Pathway%20Toward%20Pattern%20Recognition%20and%20Prediction&rft.jtitle=The%20Psychological%20record&rft.au=Ninness,%20Chris&rft.date=2012-10-01&rft.volume=62&rft.issue=4&rft.spage=579&rft.epage=598&rft.pages=579-598&rft.issn=0033-2933&rft.eissn=2163-3452&rft.coden=PYRCAI&rft_id=info:doi/10.1007/BF03395822&rft_dat=%3Cgale_proqu%3EA309590745%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1159458497&rft_id=info:pmid/&rft_galeid=A309590745&rft_ericid=EJ1002963&rfr_iscdi=true