Inclusion and Exclusion in Natural Language

We present a formal system for reasoning about inclusion and exclusion in natural language, following work by MacCartney and Manning. In particular, we show that an extension of the Monotonicity Calculus, augmented by six new type markings, is sufficient to derive novel inferences beyond monotonicit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studia logica 2012-08, Vol.100 (4), p.705-725
1. Verfasser: Icard, Thomas F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 725
container_issue 4
container_start_page 705
container_title Studia logica
container_volume 100
creator Icard, Thomas F.
description We present a formal system for reasoning about inclusion and exclusion in natural language, following work by MacCartney and Manning. In particular, we show that an extension of the Monotonicity Calculus, augmented by six new type markings, is sufficient to derive novel inferences beyond monotonicity reasoning, and moreover gives rise to an interesting logic of its own. We prove soundness of the resulting calculus and discuss further logical and linguistic issues, including a new connection to the classes of weak, strong, and superstrong negative polarity items.
doi_str_mv 10.1007/s11225-012-9425-8
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1449084205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23262131</jstor_id><sourcerecordid>23262131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-cfaa7e19b2526ba6ea34a1137c8237f58487529dd66fd8dba38e18de674f983d3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gAchR0GiO7PfRylVC0Uvel622U1JSTd1NwH990aiHj3NDLzPDPMQcgn0FihVdxkAUZQUsDR8bPQRmYFQWGrF6DGZUcpMyRDEKTnLeUcpRWnMjNysYtUOueli4aIvlh-_UxOLZ9cPybXF2sXt4LbhnJzUrs3h4qfOydvD8nXxVK5fHleL-3VZcWr6sqqdUwHMBgXKjZPBMe4AmKo0MlULzbUSaLyXsvbabxzTAbQPUvHaaObZnFxPew-pex9C7u2-yVVoWxdDN2QLnBuqOVIxRmGKVqnLOYXaHlKzd-nTArXfYuwkxo5i7LcYq0cGJyaP2bgNye66IcXxo3-hqwna5b5Lf1eQoURgwL4A0ZJuDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449084205</pqid></control><display><type>article</type><title>Inclusion and Exclusion in Natural Language</title><source>SpringerNature Journals</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Icard, Thomas F.</creator><creatorcontrib>Icard, Thomas F.</creatorcontrib><description>We present a formal system for reasoning about inclusion and exclusion in natural language, following work by MacCartney and Manning. In particular, we show that an extension of the Monotonicity Calculus, augmented by six new type markings, is sufficient to derive novel inferences beyond monotonicity reasoning, and moreover gives rise to an interesting logic of its own. We prove soundness of the resulting calculus and discuss further logical and linguistic issues, including a new connection to the classes of weak, strong, and superstrong negative polarity items.</description><identifier>ISSN: 0039-3215</identifier><identifier>EISSN: 1572-8730</identifier><identifier>DOI: 10.1007/s11225-012-9425-8</identifier><identifier>CODEN: STLOEQ</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Boolean data ; Cephalopods ; Computational Linguistics ; Education ; Inference ; Logic ; Mathematical functions ; Mathematical Logic and Foundations ; Mathematical monotonicity ; Natural language ; Natural logic ; Philosophy ; Reasoning ; Semantics ; Signatures</subject><ispartof>Studia logica, 2012-08, Vol.100 (4), p.705-725</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-cfaa7e19b2526ba6ea34a1137c8237f58487529dd66fd8dba38e18de674f983d3</citedby><cites>FETCH-LOGICAL-c409t-cfaa7e19b2526ba6ea34a1137c8237f58487529dd66fd8dba38e18de674f983d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23262131$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23262131$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,41488,42557,51319,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Icard, Thomas F.</creatorcontrib><title>Inclusion and Exclusion in Natural Language</title><title>Studia logica</title><addtitle>Stud Logica</addtitle><description>We present a formal system for reasoning about inclusion and exclusion in natural language, following work by MacCartney and Manning. In particular, we show that an extension of the Monotonicity Calculus, augmented by six new type markings, is sufficient to derive novel inferences beyond monotonicity reasoning, and moreover gives rise to an interesting logic of its own. We prove soundness of the resulting calculus and discuss further logical and linguistic issues, including a new connection to the classes of weak, strong, and superstrong negative polarity items.</description><subject>Boolean data</subject><subject>Cephalopods</subject><subject>Computational Linguistics</subject><subject>Education</subject><subject>Inference</subject><subject>Logic</subject><subject>Mathematical functions</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematical monotonicity</subject><subject>Natural language</subject><subject>Natural logic</subject><subject>Philosophy</subject><subject>Reasoning</subject><subject>Semantics</subject><subject>Signatures</subject><issn>0039-3215</issn><issn>1572-8730</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZ_gAchR0GiO7PfRylVC0Uvel622U1JSTd1NwH990aiHj3NDLzPDPMQcgn0FihVdxkAUZQUsDR8bPQRmYFQWGrF6DGZUcpMyRDEKTnLeUcpRWnMjNysYtUOueli4aIvlh-_UxOLZ9cPybXF2sXt4LbhnJzUrs3h4qfOydvD8nXxVK5fHleL-3VZcWr6sqqdUwHMBgXKjZPBMe4AmKo0MlULzbUSaLyXsvbabxzTAbQPUvHaaObZnFxPew-pex9C7u2-yVVoWxdDN2QLnBuqOVIxRmGKVqnLOYXaHlKzd-nTArXfYuwkxo5i7LcYq0cGJyaP2bgNye66IcXxo3-hqwna5b5Lf1eQoURgwL4A0ZJuDA</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Icard, Thomas F.</creator><general>Springer</general><general>Springer Netherlands</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope></search><sort><creationdate>20120801</creationdate><title>Inclusion and Exclusion in Natural Language</title><author>Icard, Thomas F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-cfaa7e19b2526ba6ea34a1137c8237f58487529dd66fd8dba38e18de674f983d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Boolean data</topic><topic>Cephalopods</topic><topic>Computational Linguistics</topic><topic>Education</topic><topic>Inference</topic><topic>Logic</topic><topic>Mathematical functions</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematical monotonicity</topic><topic>Natural language</topic><topic>Natural logic</topic><topic>Philosophy</topic><topic>Reasoning</topic><topic>Semantics</topic><topic>Signatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Icard, Thomas F.</creatorcontrib><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><jtitle>Studia logica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Icard, Thomas F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inclusion and Exclusion in Natural Language</atitle><jtitle>Studia logica</jtitle><stitle>Stud Logica</stitle><date>2012-08-01</date><risdate>2012</risdate><volume>100</volume><issue>4</issue><spage>705</spage><epage>725</epage><pages>705-725</pages><issn>0039-3215</issn><eissn>1572-8730</eissn><coden>STLOEQ</coden><abstract>We present a formal system for reasoning about inclusion and exclusion in natural language, following work by MacCartney and Manning. In particular, we show that an extension of the Monotonicity Calculus, augmented by six new type markings, is sufficient to derive novel inferences beyond monotonicity reasoning, and moreover gives rise to an interesting logic of its own. We prove soundness of the resulting calculus and discuss further logical and linguistic issues, including a new connection to the classes of weak, strong, and superstrong negative polarity items.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s11225-012-9425-8</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-3215
ispartof Studia logica, 2012-08, Vol.100 (4), p.705-725
issn 0039-3215
1572-8730
language eng
recordid cdi_proquest_miscellaneous_1449084205
source SpringerNature Journals; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Boolean data
Cephalopods
Computational Linguistics
Education
Inference
Logic
Mathematical functions
Mathematical Logic and Foundations
Mathematical monotonicity
Natural language
Natural logic
Philosophy
Reasoning
Semantics
Signatures
title Inclusion and Exclusion in Natural Language
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inclusion%20and%20Exclusion%20in%20Natural%20Language&rft.jtitle=Studia%20logica&rft.au=Icard,%20Thomas%20F.&rft.date=2012-08-01&rft.volume=100&rft.issue=4&rft.spage=705&rft.epage=725&rft.pages=705-725&rft.issn=0039-3215&rft.eissn=1572-8730&rft.coden=STLOEQ&rft_id=info:doi/10.1007/s11225-012-9425-8&rft_dat=%3Cjstor_proqu%3E23262131%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449084205&rft_id=info:pmid/&rft_jstor_id=23262131&rfr_iscdi=true