Inclusion and Exclusion in Natural Language
We present a formal system for reasoning about inclusion and exclusion in natural language, following work by MacCartney and Manning. In particular, we show that an extension of the Monotonicity Calculus, augmented by six new type markings, is sufficient to derive novel inferences beyond monotonicit...
Gespeichert in:
Veröffentlicht in: | Studia logica 2012-08, Vol.100 (4), p.705-725 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 725 |
---|---|
container_issue | 4 |
container_start_page | 705 |
container_title | Studia logica |
container_volume | 100 |
creator | Icard, Thomas F. |
description | We present a formal system for reasoning about inclusion and exclusion in natural language, following work by MacCartney and Manning. In particular, we show that an extension of the Monotonicity Calculus, augmented by six new type markings, is sufficient to derive novel inferences beyond monotonicity reasoning, and moreover gives rise to an interesting logic of its own. We prove soundness of the resulting calculus and discuss further logical and linguistic issues, including a new connection to the classes of weak, strong, and superstrong negative polarity items. |
doi_str_mv | 10.1007/s11225-012-9425-8 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1449084205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23262131</jstor_id><sourcerecordid>23262131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-cfaa7e19b2526ba6ea34a1137c8237f58487529dd66fd8dba38e18de674f983d3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gAchR0GiO7PfRylVC0Uvel622U1JSTd1NwH990aiHj3NDLzPDPMQcgn0FihVdxkAUZQUsDR8bPQRmYFQWGrF6DGZUcpMyRDEKTnLeUcpRWnMjNysYtUOueli4aIvlh-_UxOLZ9cPybXF2sXt4LbhnJzUrs3h4qfOydvD8nXxVK5fHleL-3VZcWr6sqqdUwHMBgXKjZPBMe4AmKo0MlULzbUSaLyXsvbabxzTAbQPUvHaaObZnFxPew-pex9C7u2-yVVoWxdDN2QLnBuqOVIxRmGKVqnLOYXaHlKzd-nTArXfYuwkxo5i7LcYq0cGJyaP2bgNye66IcXxo3-hqwna5b5Lf1eQoURgwL4A0ZJuDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449084205</pqid></control><display><type>article</type><title>Inclusion and Exclusion in Natural Language</title><source>SpringerNature Journals</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Icard, Thomas F.</creator><creatorcontrib>Icard, Thomas F.</creatorcontrib><description>We present a formal system for reasoning about inclusion and exclusion in natural language, following work by MacCartney and Manning. In particular, we show that an extension of the Monotonicity Calculus, augmented by six new type markings, is sufficient to derive novel inferences beyond monotonicity reasoning, and moreover gives rise to an interesting logic of its own. We prove soundness of the resulting calculus and discuss further logical and linguistic issues, including a new connection to the classes of weak, strong, and superstrong negative polarity items.</description><identifier>ISSN: 0039-3215</identifier><identifier>EISSN: 1572-8730</identifier><identifier>DOI: 10.1007/s11225-012-9425-8</identifier><identifier>CODEN: STLOEQ</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Boolean data ; Cephalopods ; Computational Linguistics ; Education ; Inference ; Logic ; Mathematical functions ; Mathematical Logic and Foundations ; Mathematical monotonicity ; Natural language ; Natural logic ; Philosophy ; Reasoning ; Semantics ; Signatures</subject><ispartof>Studia logica, 2012-08, Vol.100 (4), p.705-725</ispartof><rights>Springer Science+Business Media B.V. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-cfaa7e19b2526ba6ea34a1137c8237f58487529dd66fd8dba38e18de674f983d3</citedby><cites>FETCH-LOGICAL-c409t-cfaa7e19b2526ba6ea34a1137c8237f58487529dd66fd8dba38e18de674f983d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23262131$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23262131$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,41488,42557,51319,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Icard, Thomas F.</creatorcontrib><title>Inclusion and Exclusion in Natural Language</title><title>Studia logica</title><addtitle>Stud Logica</addtitle><description>We present a formal system for reasoning about inclusion and exclusion in natural language, following work by MacCartney and Manning. In particular, we show that an extension of the Monotonicity Calculus, augmented by six new type markings, is sufficient to derive novel inferences beyond monotonicity reasoning, and moreover gives rise to an interesting logic of its own. We prove soundness of the resulting calculus and discuss further logical and linguistic issues, including a new connection to the classes of weak, strong, and superstrong negative polarity items.</description><subject>Boolean data</subject><subject>Cephalopods</subject><subject>Computational Linguistics</subject><subject>Education</subject><subject>Inference</subject><subject>Logic</subject><subject>Mathematical functions</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematical monotonicity</subject><subject>Natural language</subject><subject>Natural logic</subject><subject>Philosophy</subject><subject>Reasoning</subject><subject>Semantics</subject><subject>Signatures</subject><issn>0039-3215</issn><issn>1572-8730</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZ_gAchR0GiO7PfRylVC0Uvel622U1JSTd1NwH990aiHj3NDLzPDPMQcgn0FihVdxkAUZQUsDR8bPQRmYFQWGrF6DGZUcpMyRDEKTnLeUcpRWnMjNysYtUOueli4aIvlh-_UxOLZ9cPybXF2sXt4LbhnJzUrs3h4qfOydvD8nXxVK5fHleL-3VZcWr6sqqdUwHMBgXKjZPBMe4AmKo0MlULzbUSaLyXsvbabxzTAbQPUvHaaObZnFxPew-pex9C7u2-yVVoWxdDN2QLnBuqOVIxRmGKVqnLOYXaHlKzd-nTArXfYuwkxo5i7LcYq0cGJyaP2bgNye66IcXxo3-hqwna5b5Lf1eQoURgwL4A0ZJuDA</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Icard, Thomas F.</creator><general>Springer</general><general>Springer Netherlands</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7T9</scope></search><sort><creationdate>20120801</creationdate><title>Inclusion and Exclusion in Natural Language</title><author>Icard, Thomas F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-cfaa7e19b2526ba6ea34a1137c8237f58487529dd66fd8dba38e18de674f983d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Boolean data</topic><topic>Cephalopods</topic><topic>Computational Linguistics</topic><topic>Education</topic><topic>Inference</topic><topic>Logic</topic><topic>Mathematical functions</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematical monotonicity</topic><topic>Natural language</topic><topic>Natural logic</topic><topic>Philosophy</topic><topic>Reasoning</topic><topic>Semantics</topic><topic>Signatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Icard, Thomas F.</creatorcontrib><collection>CrossRef</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><jtitle>Studia logica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Icard, Thomas F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inclusion and Exclusion in Natural Language</atitle><jtitle>Studia logica</jtitle><stitle>Stud Logica</stitle><date>2012-08-01</date><risdate>2012</risdate><volume>100</volume><issue>4</issue><spage>705</spage><epage>725</epage><pages>705-725</pages><issn>0039-3215</issn><eissn>1572-8730</eissn><coden>STLOEQ</coden><abstract>We present a formal system for reasoning about inclusion and exclusion in natural language, following work by MacCartney and Manning. In particular, we show that an extension of the Monotonicity Calculus, augmented by six new type markings, is sufficient to derive novel inferences beyond monotonicity reasoning, and moreover gives rise to an interesting logic of its own. We prove soundness of the resulting calculus and discuss further logical and linguistic issues, including a new connection to the classes of weak, strong, and superstrong negative polarity items.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s11225-012-9425-8</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-3215 |
ispartof | Studia logica, 2012-08, Vol.100 (4), p.705-725 |
issn | 0039-3215 1572-8730 |
language | eng |
recordid | cdi_proquest_miscellaneous_1449084205 |
source | SpringerNature Journals; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Boolean data Cephalopods Computational Linguistics Education Inference Logic Mathematical functions Mathematical Logic and Foundations Mathematical monotonicity Natural language Natural logic Philosophy Reasoning Semantics Signatures |
title | Inclusion and Exclusion in Natural Language |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inclusion%20and%20Exclusion%20in%20Natural%20Language&rft.jtitle=Studia%20logica&rft.au=Icard,%20Thomas%20F.&rft.date=2012-08-01&rft.volume=100&rft.issue=4&rft.spage=705&rft.epage=725&rft.pages=705-725&rft.issn=0039-3215&rft.eissn=1572-8730&rft.coden=STLOEQ&rft_id=info:doi/10.1007/s11225-012-9425-8&rft_dat=%3Cjstor_proqu%3E23262131%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449084205&rft_id=info:pmid/&rft_jstor_id=23262131&rfr_iscdi=true |