An Accurate Revelation of the Similarity between Clusters
The structure of the data set playing a vital role in datamining. In concept of datamining information recovery and pattern identification nothing but data clustering. There are multiple clustering algorithms have been commenced to clustering categorical data. Unfortunately these algorithms created...
Gespeichert in:
Veröffentlicht in: | International journal of computer applications 2013-01, Vol.78 (10), p.16-20 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | 10 |
container_start_page | 16 |
container_title | International journal of computer applications |
container_volume | 78 |
creator | Mahendra, A Veera Farooq, S M |
description | The structure of the data set playing a vital role in datamining. In concept of datamining information recovery and pattern identification nothing but data clustering. There are multiple clustering algorithms have been commenced to clustering categorical data. Unfortunately these algorithms created an incomplete information. In recent times cluster ensembles have come out as an essential solution to overcome these limitations and to get the excellence results for clustering. A Link-Based similarity measure is proposed to guess unknown values from a link network of clusters and bridges the gap among the task of data clustering and that link examination. It also improves the ability of ensemble methodology for categorical data. A new Link-Based cluster ensemble approach is commenced which is well-organized than the previous model, where a binary cluster association matrix, like matrix is used to create the cluster ensembles. These cluster ensembles have impurity information, to overcome these problem Link-Based similarity algorithm is used to generate an accurate pure clusters. |
doi_str_mv | 10.5120/13525-1220 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448777129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078968031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1320-5160cabf7dcceb0b8fdece69de922660eb0185d8812d89d47ccf966a05df0983</originalsourceid><addsrcrecordid>eNpdkMtKAzEUhoMoWGo3PkHAjQijSWZyW5biDQqCdh8yyQlOmUtNMkrf3ql1IZ7NORw-fn4-hC4pueWUkTtacsYLyhg5QTOiJS-UUvL0z32OFiltyTSlZkJXM6SXPV46N0abAb_CJ7Q2N0OPh4DzO-C3pmtaG5u8xzXkL4Aer9oxZYjpAp0F2yZY_O452jzcb1ZPxfrl8Xm1XBeOlowUnAribB2kdw5qUqvgwYHQHjRjQpDpRxX3SlHmlfaVdC5oISzhPhCtyjm6Psbu4vAxQsqma5KDtrU9DGMytKqUlJIyPaFX_9DtMMZ-KjdRZaWYYoJM1M2RcnFIKUIwu9h0Nu4NJebg0fx4NAeP5TdOdmMB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1434828260</pqid></control><display><type>article</type><title>An Accurate Revelation of the Similarity between Clusters</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mahendra, A Veera ; Farooq, S M</creator><creatorcontrib>Mahendra, A Veera ; Farooq, S M</creatorcontrib><description>The structure of the data set playing a vital role in datamining. In concept of datamining information recovery and pattern identification nothing but data clustering. There are multiple clustering algorithms have been commenced to clustering categorical data. Unfortunately these algorithms created an incomplete information. In recent times cluster ensembles have come out as an essential solution to overcome these limitations and to get the excellence results for clustering. A Link-Based similarity measure is proposed to guess unknown values from a link network of clusters and bridges the gap among the task of data clustering and that link examination. It also improves the ability of ensemble methodology for categorical data. A new Link-Based cluster ensemble approach is commenced which is well-organized than the previous model, where a binary cluster association matrix, like matrix is used to create the cluster ensembles. These cluster ensembles have impurity information, to overcome these problem Link-Based similarity algorithm is used to generate an accurate pure clusters.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/13525-1220</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Algorithms ; Clustering ; Clusters ; Computer simulation ; Links ; Mathematical models ; Similarity ; Tasks</subject><ispartof>International journal of computer applications, 2013-01, Vol.78 (10), p.16-20</ispartof><rights>Copyright Foundation of Computer Science 2013</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Mahendra, A Veera</creatorcontrib><creatorcontrib>Farooq, S M</creatorcontrib><title>An Accurate Revelation of the Similarity between Clusters</title><title>International journal of computer applications</title><description>The structure of the data set playing a vital role in datamining. In concept of datamining information recovery and pattern identification nothing but data clustering. There are multiple clustering algorithms have been commenced to clustering categorical data. Unfortunately these algorithms created an incomplete information. In recent times cluster ensembles have come out as an essential solution to overcome these limitations and to get the excellence results for clustering. A Link-Based similarity measure is proposed to guess unknown values from a link network of clusters and bridges the gap among the task of data clustering and that link examination. It also improves the ability of ensemble methodology for categorical data. A new Link-Based cluster ensemble approach is commenced which is well-organized than the previous model, where a binary cluster association matrix, like matrix is used to create the cluster ensembles. These cluster ensembles have impurity information, to overcome these problem Link-Based similarity algorithm is used to generate an accurate pure clusters.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Computer simulation</subject><subject>Links</subject><subject>Mathematical models</subject><subject>Similarity</subject><subject>Tasks</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkMtKAzEUhoMoWGo3PkHAjQijSWZyW5biDQqCdh8yyQlOmUtNMkrf3ql1IZ7NORw-fn4-hC4pueWUkTtacsYLyhg5QTOiJS-UUvL0z32OFiltyTSlZkJXM6SXPV46N0abAb_CJ7Q2N0OPh4DzO-C3pmtaG5u8xzXkL4Aer9oxZYjpAp0F2yZY_O452jzcb1ZPxfrl8Xm1XBeOlowUnAribB2kdw5qUqvgwYHQHjRjQpDpRxX3SlHmlfaVdC5oISzhPhCtyjm6Psbu4vAxQsqma5KDtrU9DGMytKqUlJIyPaFX_9DtMMZ-KjdRZaWYYoJM1M2RcnFIKUIwu9h0Nu4NJebg0fx4NAeP5TdOdmMB</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Mahendra, A Veera</creator><creator>Farooq, S M</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>An Accurate Revelation of the Similarity between Clusters</title><author>Mahendra, A Veera ; Farooq, S M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1320-5160cabf7dcceb0b8fdece69de922660eb0185d8812d89d47ccf966a05df0983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Computer simulation</topic><topic>Links</topic><topic>Mathematical models</topic><topic>Similarity</topic><topic>Tasks</topic><toplevel>online_resources</toplevel><creatorcontrib>Mahendra, A Veera</creatorcontrib><creatorcontrib>Farooq, S M</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahendra, A Veera</au><au>Farooq, S M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Accurate Revelation of the Similarity between Clusters</atitle><jtitle>International journal of computer applications</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>78</volume><issue>10</issue><spage>16</spage><epage>20</epage><pages>16-20</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>The structure of the data set playing a vital role in datamining. In concept of datamining information recovery and pattern identification nothing but data clustering. There are multiple clustering algorithms have been commenced to clustering categorical data. Unfortunately these algorithms created an incomplete information. In recent times cluster ensembles have come out as an essential solution to overcome these limitations and to get the excellence results for clustering. A Link-Based similarity measure is proposed to guess unknown values from a link network of clusters and bridges the gap among the task of data clustering and that link examination. It also improves the ability of ensemble methodology for categorical data. A new Link-Based cluster ensemble approach is commenced which is well-organized than the previous model, where a binary cluster association matrix, like matrix is used to create the cluster ensembles. These cluster ensembles have impurity information, to overcome these problem Link-Based similarity algorithm is used to generate an accurate pure clusters.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/13525-1220</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0975-8887 |
ispartof | International journal of computer applications, 2013-01, Vol.78 (10), p.16-20 |
issn | 0975-8887 0975-8887 |
language | eng |
recordid | cdi_proquest_miscellaneous_1448777129 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Clustering Clusters Computer simulation Links Mathematical models Similarity Tasks |
title | An Accurate Revelation of the Similarity between Clusters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A44%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Accurate%20Revelation%20of%20the%20Similarity%20between%20Clusters&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Mahendra,%20A%20Veera&rft.date=2013-01-01&rft.volume=78&rft.issue=10&rft.spage=16&rft.epage=20&rft.pages=16-20&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/13525-1220&rft_dat=%3Cproquest_cross%3E3078968031%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1434828260&rft_id=info:pmid/&rfr_iscdi=true |