Measurement of the internal cell temperature via impedance: Evaluation and application of a new method

Sensorless online temperature measurement of lithium-ion cells based on electrochemical impedance spectroscopy (EIS) measurements is introduced and applied to a commercial 2 Ah pouch cell. The method's sensitivity on temperature and state of charge (SOC) is investigated, taking a closer look to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2013-12, Vol.243, p.110-117
Hauptverfasser: Schmidt, Jan Philipp, Arnold, Stefan, Loges, André, Werner, Daniel, Wetzel, Thomas, Ivers-Tiffée, Ellen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue
container_start_page 110
container_title Journal of power sources
container_volume 243
creator Schmidt, Jan Philipp
Arnold, Stefan
Loges, André
Werner, Daniel
Wetzel, Thomas
Ivers-Tiffée, Ellen
description Sensorless online temperature measurement of lithium-ion cells based on electrochemical impedance spectroscopy (EIS) measurements is introduced and applied to a commercial 2 Ah pouch cell. The method's sensitivity on temperature and state of charge (SOC) is investigated, taking a closer look to the selection of measurement frequency. The internal temperature is determined as precise as ±0.17 K with SOC status known and ±2.5 K with SOC status unknown at isothermal conditions. Furthermore, the influence of a temperature gradient, as it will develop during cell operation, is studied in detail and the simulation results are validated experimentally. Finally, the method's ability to monitor the temperature is demonstrated during a thermal cool down. •The internal temperature of a lithium-ion cell can be determined by EIS.•If temperature gradients are present this temperature represents the mean value.•SOC independence is obtained by selecting an appropriate measurement frequency.•During operation the internal temperature exceeds the surface temperature by 20%.•The application of this method can increase safety of battery operation.
doi_str_mv 10.1016/j.jpowsour.2013.06.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448754389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775313010070</els_id><sourcerecordid>1448754389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-475923ae230623bf956e72cb94bb6f162a7bc38ed34652c6de8f89d7de7b74e63</originalsourceid><addsrcrecordid>eNqFkE9r3DAUxEVJoZu0X6HoUsjFjv7Ykt1TQkiaQkov7Vk8S89Ei225kryh3z5aNum1p2Fg3hvmR8hnzmrOuLra1_s1PKewxVowLmum6iLvyI53WlZCt-0Z2TGpu0rrVn4g5yntGWOca7Yj4w-EtEWccck0jDQ_IfVLxrjARC1OE804rxghlxA9eKC-WAeLxa_07gDTBtmHhcLiKKzr5O3Jl1dAF3ymM-an4D6S9yNMCT-96gX5fX_36_ahevz57fvtzWNlGy5y1ei2FxJQSKaEHMa-VaiFHfpmGNTIlQA9WNmhk41qhVUOu7HrnXaoB92gkhfk8vR3jeHPhimb2afjDFgwbMnwpul028iuL1F1itoYUoo4mjX6GeJfw5k5gjV78wbWHMEapkyRcvjltQOShWmMBYZP_66F1lxocSy4PuWwDD54jCZZjwWc8xFtNi74_1W9AHGak80</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448754389</pqid></control><display><type>article</type><title>Measurement of the internal cell temperature via impedance: Evaluation and application of a new method</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Schmidt, Jan Philipp ; Arnold, Stefan ; Loges, André ; Werner, Daniel ; Wetzel, Thomas ; Ivers-Tiffée, Ellen</creator><creatorcontrib>Schmidt, Jan Philipp ; Arnold, Stefan ; Loges, André ; Werner, Daniel ; Wetzel, Thomas ; Ivers-Tiffée, Ellen</creatorcontrib><description>Sensorless online temperature measurement of lithium-ion cells based on electrochemical impedance spectroscopy (EIS) measurements is introduced and applied to a commercial 2 Ah pouch cell. The method's sensitivity on temperature and state of charge (SOC) is investigated, taking a closer look to the selection of measurement frequency. The internal temperature is determined as precise as ±0.17 K with SOC status known and ±2.5 K with SOC status unknown at isothermal conditions. Furthermore, the influence of a temperature gradient, as it will develop during cell operation, is studied in detail and the simulation results are validated experimentally. Finally, the method's ability to monitor the temperature is demonstrated during a thermal cool down. •The internal temperature of a lithium-ion cell can be determined by EIS.•If temperature gradients are present this temperature represents the mean value.•SOC independence is obtained by selecting an appropriate measurement frequency.•During operation the internal temperature exceeds the surface temperature by 20%.•The application of this method can increase safety of battery operation.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.06.013</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Charge ; Direct energy conversion and energy accumulation ; EIS ; Electric cells ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemical impedance spectroscopy ; Exact sciences and technology ; Impedance ; Lithium batteries ; Lithium-ion ; Measurement ; Monitors ; Ohmic resistance ; On-line systems ; Simulation ; Temperature ; Temperature gradient</subject><ispartof>Journal of power sources, 2013-12, Vol.243, p.110-117</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-475923ae230623bf956e72cb94bb6f162a7bc38ed34652c6de8f89d7de7b74e63</citedby><cites>FETCH-LOGICAL-c412t-475923ae230623bf956e72cb94bb6f162a7bc38ed34652c6de8f89d7de7b74e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2013.06.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27712729$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmidt, Jan Philipp</creatorcontrib><creatorcontrib>Arnold, Stefan</creatorcontrib><creatorcontrib>Loges, André</creatorcontrib><creatorcontrib>Werner, Daniel</creatorcontrib><creatorcontrib>Wetzel, Thomas</creatorcontrib><creatorcontrib>Ivers-Tiffée, Ellen</creatorcontrib><title>Measurement of the internal cell temperature via impedance: Evaluation and application of a new method</title><title>Journal of power sources</title><description>Sensorless online temperature measurement of lithium-ion cells based on electrochemical impedance spectroscopy (EIS) measurements is introduced and applied to a commercial 2 Ah pouch cell. The method's sensitivity on temperature and state of charge (SOC) is investigated, taking a closer look to the selection of measurement frequency. The internal temperature is determined as precise as ±0.17 K with SOC status known and ±2.5 K with SOC status unknown at isothermal conditions. Furthermore, the influence of a temperature gradient, as it will develop during cell operation, is studied in detail and the simulation results are validated experimentally. Finally, the method's ability to monitor the temperature is demonstrated during a thermal cool down. •The internal temperature of a lithium-ion cell can be determined by EIS.•If temperature gradients are present this temperature represents the mean value.•SOC independence is obtained by selecting an appropriate measurement frequency.•During operation the internal temperature exceeds the surface temperature by 20%.•The application of this method can increase safety of battery operation.</description><subject>Applied sciences</subject><subject>Charge</subject><subject>Direct energy conversion and energy accumulation</subject><subject>EIS</subject><subject>Electric cells</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Exact sciences and technology</subject><subject>Impedance</subject><subject>Lithium batteries</subject><subject>Lithium-ion</subject><subject>Measurement</subject><subject>Monitors</subject><subject>Ohmic resistance</subject><subject>On-line systems</subject><subject>Simulation</subject><subject>Temperature</subject><subject>Temperature gradient</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE9r3DAUxEVJoZu0X6HoUsjFjv7Ykt1TQkiaQkov7Vk8S89Ei225kryh3z5aNum1p2Fg3hvmR8hnzmrOuLra1_s1PKewxVowLmum6iLvyI53WlZCt-0Z2TGpu0rrVn4g5yntGWOca7Yj4w-EtEWccck0jDQ_IfVLxrjARC1OE804rxghlxA9eKC-WAeLxa_07gDTBtmHhcLiKKzr5O3Jl1dAF3ymM-an4D6S9yNMCT-96gX5fX_36_ahevz57fvtzWNlGy5y1ei2FxJQSKaEHMa-VaiFHfpmGNTIlQA9WNmhk41qhVUOu7HrnXaoB92gkhfk8vR3jeHPhimb2afjDFgwbMnwpul028iuL1F1itoYUoo4mjX6GeJfw5k5gjV78wbWHMEapkyRcvjltQOShWmMBYZP_66F1lxocSy4PuWwDD54jCZZjwWc8xFtNi74_1W9AHGak80</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Schmidt, Jan Philipp</creator><creator>Arnold, Stefan</creator><creator>Loges, André</creator><creator>Werner, Daniel</creator><creator>Wetzel, Thomas</creator><creator>Ivers-Tiffée, Ellen</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Measurement of the internal cell temperature via impedance: Evaluation and application of a new method</title><author>Schmidt, Jan Philipp ; Arnold, Stefan ; Loges, André ; Werner, Daniel ; Wetzel, Thomas ; Ivers-Tiffée, Ellen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-475923ae230623bf956e72cb94bb6f162a7bc38ed34652c6de8f89d7de7b74e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Charge</topic><topic>Direct energy conversion and energy accumulation</topic><topic>EIS</topic><topic>Electric cells</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Exact sciences and technology</topic><topic>Impedance</topic><topic>Lithium batteries</topic><topic>Lithium-ion</topic><topic>Measurement</topic><topic>Monitors</topic><topic>Ohmic resistance</topic><topic>On-line systems</topic><topic>Simulation</topic><topic>Temperature</topic><topic>Temperature gradient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, Jan Philipp</creatorcontrib><creatorcontrib>Arnold, Stefan</creatorcontrib><creatorcontrib>Loges, André</creatorcontrib><creatorcontrib>Werner, Daniel</creatorcontrib><creatorcontrib>Wetzel, Thomas</creatorcontrib><creatorcontrib>Ivers-Tiffée, Ellen</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, Jan Philipp</au><au>Arnold, Stefan</au><au>Loges, André</au><au>Werner, Daniel</au><au>Wetzel, Thomas</au><au>Ivers-Tiffée, Ellen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of the internal cell temperature via impedance: Evaluation and application of a new method</atitle><jtitle>Journal of power sources</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>243</volume><spage>110</spage><epage>117</epage><pages>110-117</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Sensorless online temperature measurement of lithium-ion cells based on electrochemical impedance spectroscopy (EIS) measurements is introduced and applied to a commercial 2 Ah pouch cell. The method's sensitivity on temperature and state of charge (SOC) is investigated, taking a closer look to the selection of measurement frequency. The internal temperature is determined as precise as ±0.17 K with SOC status known and ±2.5 K with SOC status unknown at isothermal conditions. Furthermore, the influence of a temperature gradient, as it will develop during cell operation, is studied in detail and the simulation results are validated experimentally. Finally, the method's ability to monitor the temperature is demonstrated during a thermal cool down. •The internal temperature of a lithium-ion cell can be determined by EIS.•If temperature gradients are present this temperature represents the mean value.•SOC independence is obtained by selecting an appropriate measurement frequency.•During operation the internal temperature exceeds the surface temperature by 20%.•The application of this method can increase safety of battery operation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2013.06.013</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2013-12, Vol.243, p.110-117
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_1448754389
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Charge
Direct energy conversion and energy accumulation
EIS
Electric cells
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrochemical impedance spectroscopy
Exact sciences and technology
Impedance
Lithium batteries
Lithium-ion
Measurement
Monitors
Ohmic resistance
On-line systems
Simulation
Temperature
Temperature gradient
title Measurement of the internal cell temperature via impedance: Evaluation and application of a new method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A34%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20the%20internal%20cell%20temperature%20via%20impedance:%20Evaluation%20and%20application%20of%20a%20new%20method&rft.jtitle=Journal%20of%20power%20sources&rft.au=Schmidt,%20Jan%20Philipp&rft.date=2013-12-01&rft.volume=243&rft.spage=110&rft.epage=117&rft.pages=110-117&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.06.013&rft_dat=%3Cproquest_cross%3E1448754389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448754389&rft_id=info:pmid/&rft_els_id=S0378775313010070&rfr_iscdi=true