Measurement of the internal cell temperature via impedance: Evaluation and application of a new method
Sensorless online temperature measurement of lithium-ion cells based on electrochemical impedance spectroscopy (EIS) measurements is introduced and applied to a commercial 2 Ah pouch cell. The method's sensitivity on temperature and state of charge (SOC) is investigated, taking a closer look to...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2013-12, Vol.243, p.110-117 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117 |
---|---|
container_issue | |
container_start_page | 110 |
container_title | Journal of power sources |
container_volume | 243 |
creator | Schmidt, Jan Philipp Arnold, Stefan Loges, André Werner, Daniel Wetzel, Thomas Ivers-Tiffée, Ellen |
description | Sensorless online temperature measurement of lithium-ion cells based on electrochemical impedance spectroscopy (EIS) measurements is introduced and applied to a commercial 2 Ah pouch cell. The method's sensitivity on temperature and state of charge (SOC) is investigated, taking a closer look to the selection of measurement frequency. The internal temperature is determined as precise as ±0.17 K with SOC status known and ±2.5 K with SOC status unknown at isothermal conditions.
Furthermore, the influence of a temperature gradient, as it will develop during cell operation, is studied in detail and the simulation results are validated experimentally. Finally, the method's ability to monitor the temperature is demonstrated during a thermal cool down.
•The internal temperature of a lithium-ion cell can be determined by EIS.•If temperature gradients are present this temperature represents the mean value.•SOC independence is obtained by selecting an appropriate measurement frequency.•During operation the internal temperature exceeds the surface temperature by 20%.•The application of this method can increase safety of battery operation. |
doi_str_mv | 10.1016/j.jpowsour.2013.06.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448754389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775313010070</els_id><sourcerecordid>1448754389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-475923ae230623bf956e72cb94bb6f162a7bc38ed34652c6de8f89d7de7b74e63</originalsourceid><addsrcrecordid>eNqFkE9r3DAUxEVJoZu0X6HoUsjFjv7Ykt1TQkiaQkov7Vk8S89Ei225kryh3z5aNum1p2Fg3hvmR8hnzmrOuLra1_s1PKewxVowLmum6iLvyI53WlZCt-0Z2TGpu0rrVn4g5yntGWOca7Yj4w-EtEWccck0jDQ_IfVLxrjARC1OE804rxghlxA9eKC-WAeLxa_07gDTBtmHhcLiKKzr5O3Jl1dAF3ymM-an4D6S9yNMCT-96gX5fX_36_ahevz57fvtzWNlGy5y1ei2FxJQSKaEHMa-VaiFHfpmGNTIlQA9WNmhk41qhVUOu7HrnXaoB92gkhfk8vR3jeHPhimb2afjDFgwbMnwpul028iuL1F1itoYUoo4mjX6GeJfw5k5gjV78wbWHMEapkyRcvjltQOShWmMBYZP_66F1lxocSy4PuWwDD54jCZZjwWc8xFtNi74_1W9AHGak80</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448754389</pqid></control><display><type>article</type><title>Measurement of the internal cell temperature via impedance: Evaluation and application of a new method</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Schmidt, Jan Philipp ; Arnold, Stefan ; Loges, André ; Werner, Daniel ; Wetzel, Thomas ; Ivers-Tiffée, Ellen</creator><creatorcontrib>Schmidt, Jan Philipp ; Arnold, Stefan ; Loges, André ; Werner, Daniel ; Wetzel, Thomas ; Ivers-Tiffée, Ellen</creatorcontrib><description>Sensorless online temperature measurement of lithium-ion cells based on electrochemical impedance spectroscopy (EIS) measurements is introduced and applied to a commercial 2 Ah pouch cell. The method's sensitivity on temperature and state of charge (SOC) is investigated, taking a closer look to the selection of measurement frequency. The internal temperature is determined as precise as ±0.17 K with SOC status known and ±2.5 K with SOC status unknown at isothermal conditions.
Furthermore, the influence of a temperature gradient, as it will develop during cell operation, is studied in detail and the simulation results are validated experimentally. Finally, the method's ability to monitor the temperature is demonstrated during a thermal cool down.
•The internal temperature of a lithium-ion cell can be determined by EIS.•If temperature gradients are present this temperature represents the mean value.•SOC independence is obtained by selecting an appropriate measurement frequency.•During operation the internal temperature exceeds the surface temperature by 20%.•The application of this method can increase safety of battery operation.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.06.013</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Charge ; Direct energy conversion and energy accumulation ; EIS ; Electric cells ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemical impedance spectroscopy ; Exact sciences and technology ; Impedance ; Lithium batteries ; Lithium-ion ; Measurement ; Monitors ; Ohmic resistance ; On-line systems ; Simulation ; Temperature ; Temperature gradient</subject><ispartof>Journal of power sources, 2013-12, Vol.243, p.110-117</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-475923ae230623bf956e72cb94bb6f162a7bc38ed34652c6de8f89d7de7b74e63</citedby><cites>FETCH-LOGICAL-c412t-475923ae230623bf956e72cb94bb6f162a7bc38ed34652c6de8f89d7de7b74e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2013.06.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27712729$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmidt, Jan Philipp</creatorcontrib><creatorcontrib>Arnold, Stefan</creatorcontrib><creatorcontrib>Loges, André</creatorcontrib><creatorcontrib>Werner, Daniel</creatorcontrib><creatorcontrib>Wetzel, Thomas</creatorcontrib><creatorcontrib>Ivers-Tiffée, Ellen</creatorcontrib><title>Measurement of the internal cell temperature via impedance: Evaluation and application of a new method</title><title>Journal of power sources</title><description>Sensorless online temperature measurement of lithium-ion cells based on electrochemical impedance spectroscopy (EIS) measurements is introduced and applied to a commercial 2 Ah pouch cell. The method's sensitivity on temperature and state of charge (SOC) is investigated, taking a closer look to the selection of measurement frequency. The internal temperature is determined as precise as ±0.17 K with SOC status known and ±2.5 K with SOC status unknown at isothermal conditions.
Furthermore, the influence of a temperature gradient, as it will develop during cell operation, is studied in detail and the simulation results are validated experimentally. Finally, the method's ability to monitor the temperature is demonstrated during a thermal cool down.
•The internal temperature of a lithium-ion cell can be determined by EIS.•If temperature gradients are present this temperature represents the mean value.•SOC independence is obtained by selecting an appropriate measurement frequency.•During operation the internal temperature exceeds the surface temperature by 20%.•The application of this method can increase safety of battery operation.</description><subject>Applied sciences</subject><subject>Charge</subject><subject>Direct energy conversion and energy accumulation</subject><subject>EIS</subject><subject>Electric cells</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Exact sciences and technology</subject><subject>Impedance</subject><subject>Lithium batteries</subject><subject>Lithium-ion</subject><subject>Measurement</subject><subject>Monitors</subject><subject>Ohmic resistance</subject><subject>On-line systems</subject><subject>Simulation</subject><subject>Temperature</subject><subject>Temperature gradient</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE9r3DAUxEVJoZu0X6HoUsjFjv7Ykt1TQkiaQkov7Vk8S89Ei225kryh3z5aNum1p2Fg3hvmR8hnzmrOuLra1_s1PKewxVowLmum6iLvyI53WlZCt-0Z2TGpu0rrVn4g5yntGWOca7Yj4w-EtEWccck0jDQ_IfVLxrjARC1OE804rxghlxA9eKC-WAeLxa_07gDTBtmHhcLiKKzr5O3Jl1dAF3ymM-an4D6S9yNMCT-96gX5fX_36_ahevz57fvtzWNlGy5y1ei2FxJQSKaEHMa-VaiFHfpmGNTIlQA9WNmhk41qhVUOu7HrnXaoB92gkhfk8vR3jeHPhimb2afjDFgwbMnwpul028iuL1F1itoYUoo4mjX6GeJfw5k5gjV78wbWHMEapkyRcvjltQOShWmMBYZP_66F1lxocSy4PuWwDD54jCZZjwWc8xFtNi74_1W9AHGak80</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Schmidt, Jan Philipp</creator><creator>Arnold, Stefan</creator><creator>Loges, André</creator><creator>Werner, Daniel</creator><creator>Wetzel, Thomas</creator><creator>Ivers-Tiffée, Ellen</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Measurement of the internal cell temperature via impedance: Evaluation and application of a new method</title><author>Schmidt, Jan Philipp ; Arnold, Stefan ; Loges, André ; Werner, Daniel ; Wetzel, Thomas ; Ivers-Tiffée, Ellen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-475923ae230623bf956e72cb94bb6f162a7bc38ed34652c6de8f89d7de7b74e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Charge</topic><topic>Direct energy conversion and energy accumulation</topic><topic>EIS</topic><topic>Electric cells</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Exact sciences and technology</topic><topic>Impedance</topic><topic>Lithium batteries</topic><topic>Lithium-ion</topic><topic>Measurement</topic><topic>Monitors</topic><topic>Ohmic resistance</topic><topic>On-line systems</topic><topic>Simulation</topic><topic>Temperature</topic><topic>Temperature gradient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, Jan Philipp</creatorcontrib><creatorcontrib>Arnold, Stefan</creatorcontrib><creatorcontrib>Loges, André</creatorcontrib><creatorcontrib>Werner, Daniel</creatorcontrib><creatorcontrib>Wetzel, Thomas</creatorcontrib><creatorcontrib>Ivers-Tiffée, Ellen</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, Jan Philipp</au><au>Arnold, Stefan</au><au>Loges, André</au><au>Werner, Daniel</au><au>Wetzel, Thomas</au><au>Ivers-Tiffée, Ellen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of the internal cell temperature via impedance: Evaluation and application of a new method</atitle><jtitle>Journal of power sources</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>243</volume><spage>110</spage><epage>117</epage><pages>110-117</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Sensorless online temperature measurement of lithium-ion cells based on electrochemical impedance spectroscopy (EIS) measurements is introduced and applied to a commercial 2 Ah pouch cell. The method's sensitivity on temperature and state of charge (SOC) is investigated, taking a closer look to the selection of measurement frequency. The internal temperature is determined as precise as ±0.17 K with SOC status known and ±2.5 K with SOC status unknown at isothermal conditions.
Furthermore, the influence of a temperature gradient, as it will develop during cell operation, is studied in detail and the simulation results are validated experimentally. Finally, the method's ability to monitor the temperature is demonstrated during a thermal cool down.
•The internal temperature of a lithium-ion cell can be determined by EIS.•If temperature gradients are present this temperature represents the mean value.•SOC independence is obtained by selecting an appropriate measurement frequency.•During operation the internal temperature exceeds the surface temperature by 20%.•The application of this method can increase safety of battery operation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2013.06.013</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2013-12, Vol.243, p.110-117 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_1448754389 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Applied sciences Charge Direct energy conversion and energy accumulation EIS Electric cells Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrochemical impedance spectroscopy Exact sciences and technology Impedance Lithium batteries Lithium-ion Measurement Monitors Ohmic resistance On-line systems Simulation Temperature Temperature gradient |
title | Measurement of the internal cell temperature via impedance: Evaluation and application of a new method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A34%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20the%20internal%20cell%20temperature%20via%20impedance:%20Evaluation%20and%20application%20of%20a%20new%20method&rft.jtitle=Journal%20of%20power%20sources&rft.au=Schmidt,%20Jan%20Philipp&rft.date=2013-12-01&rft.volume=243&rft.spage=110&rft.epage=117&rft.pages=110-117&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.06.013&rft_dat=%3Cproquest_cross%3E1448754389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448754389&rft_id=info:pmid/&rft_els_id=S0378775313010070&rfr_iscdi=true |