A neural network estimator of Solid Oxide Fuel Cell performance for on-field diagnostics and prognostics applications
The paper focuses on the experimental identification and validation of a neural network (NN) model of solid oxide fuel cells (SOFC) aimed at implementing on-field diagnosis of SOFC-based distributed power generators. The use of a black-box model is justified by the complexity and the incomplete know...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2013-11, Vol.241, p.320-329 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 329 |
---|---|
container_issue | |
container_start_page | 320 |
container_title | Journal of power sources |
container_volume | 241 |
creator | Marra, Dario Sorrentino, Marco Pianese, Cesare Iwanschitz, Boris |
description | The paper focuses on the experimental identification and validation of a neural network (NN) model of solid oxide fuel cells (SOFC) aimed at implementing on-field diagnosis of SOFC-based distributed power generators. The use of a black-box model is justified by the complexity and the incomplete knowledge of SOFC electrochemical processes, which may be awkward to simulate given the limited computational resources available on-board in SOFC systems deployed on-field. Suited training procedures and model input selection are proposed to improve NNs accuracy and generalization in predicting voltage variation due to degradation. Particularly, standing the interest in condition monitoring of SOFC performance throughout stack lifetime, input variables were selected in such a way as to account for the time evolution of SOFC stack performance. Different SOFC stacks outputs were tested to assess the generalization capabilities when extending NN prediction to those stacks for which no training data were gathered. The simulations performed on the test sets show the NN ability in simulating real voltage trajectory with satisfactory accuracy, thus confirming the high potential of the proposed model for real-time use on SOFC systems.
•Nonlinear modelling of Solid Oxide Fuel Cell.•Neural Network model for Solid Oxide Fuel Cell performance.•Solid Oxide Fuel Cell model for diagnostic and prognostic applications.•On-field monitoring of Solid Oxide Fuel Cell degradation. |
doi_str_mv | 10.1016/j.jpowsour.2013.04.114 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448752624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775313007222</els_id><sourcerecordid>1448752624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-d406fb81e0d67f0b5f572baca0859b8ac98168ea7acb6184f523b350650154973</originalsourceid><addsrcrecordid>eNqFkE2LFDEQhoMoOK7-BclF8NJtpTtfc3MZXBUW9qCeQzqpSMZMp026Xf33ZphVj56Kgqc-3oeQlwx6Bky-OfbHJd_XvJV-ADb2wHvG-COyY1qN3aCEeEx2MCrdKSXGp-RZrUcAYEzBjmzXdMat2NTKep_LN4p1jSe75kJzoJ9yip7e_Ywe6c2GiR4wJbpgCbmc7OyQhjM4dyFi8tRH-3XObYGr1M6eLiX_65clRWfXmOf6nDwJNlV88VCvyJebd58PH7rbu_cfD9e3neNsWDvPQYZJMwQvVYBJBKGGyToLWuwnbd1eM6nRKusmyTQPYhinUYAUwATfq_GKvL7sbY9831oyc4rVtQh2xrxVwzjXSgxy4A2VF9SVXGvBYJbSPJRfhoE5ezZH88ezOXs2wE3z3AZfPdyw1dkUStMS69_pQclR7blo3NsLhy3wj4jFVBexKfSxoFuNz_F_p34DXo2ZKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448752624</pqid></control><display><type>article</type><title>A neural network estimator of Solid Oxide Fuel Cell performance for on-field diagnostics and prognostics applications</title><source>Access via ScienceDirect (Elsevier)</source><creator>Marra, Dario ; Sorrentino, Marco ; Pianese, Cesare ; Iwanschitz, Boris</creator><creatorcontrib>Marra, Dario ; Sorrentino, Marco ; Pianese, Cesare ; Iwanschitz, Boris</creatorcontrib><description>The paper focuses on the experimental identification and validation of a neural network (NN) model of solid oxide fuel cells (SOFC) aimed at implementing on-field diagnosis of SOFC-based distributed power generators. The use of a black-box model is justified by the complexity and the incomplete knowledge of SOFC electrochemical processes, which may be awkward to simulate given the limited computational resources available on-board in SOFC systems deployed on-field. Suited training procedures and model input selection are proposed to improve NNs accuracy and generalization in predicting voltage variation due to degradation. Particularly, standing the interest in condition monitoring of SOFC performance throughout stack lifetime, input variables were selected in such a way as to account for the time evolution of SOFC stack performance. Different SOFC stacks outputs were tested to assess the generalization capabilities when extending NN prediction to those stacks for which no training data were gathered. The simulations performed on the test sets show the NN ability in simulating real voltage trajectory with satisfactory accuracy, thus confirming the high potential of the proposed model for real-time use on SOFC systems.
•Nonlinear modelling of Solid Oxide Fuel Cell.•Neural Network model for Solid Oxide Fuel Cell performance.•Solid Oxide Fuel Cell model for diagnostic and prognostic applications.•On-field monitoring of Solid Oxide Fuel Cell degradation.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.04.114</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Computer simulation ; Degradation ; Diagnosis ; Direct energy conversion and energy accumulation ; Electric potential ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Mathematical analysis ; Mathematical models ; Neural network ; Neural networks ; Nonlinear modelling ; Solid Oxide Fuel Cell ; Solid oxide fuel cells ; Stacks ; Training</subject><ispartof>Journal of power sources, 2013-11, Vol.241, p.320-329</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-d406fb81e0d67f0b5f572baca0859b8ac98168ea7acb6184f523b350650154973</citedby><cites>FETCH-LOGICAL-c412t-d406fb81e0d67f0b5f572baca0859b8ac98168ea7acb6184f523b350650154973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2013.04.114$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27637945$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Marra, Dario</creatorcontrib><creatorcontrib>Sorrentino, Marco</creatorcontrib><creatorcontrib>Pianese, Cesare</creatorcontrib><creatorcontrib>Iwanschitz, Boris</creatorcontrib><title>A neural network estimator of Solid Oxide Fuel Cell performance for on-field diagnostics and prognostics applications</title><title>Journal of power sources</title><description>The paper focuses on the experimental identification and validation of a neural network (NN) model of solid oxide fuel cells (SOFC) aimed at implementing on-field diagnosis of SOFC-based distributed power generators. The use of a black-box model is justified by the complexity and the incomplete knowledge of SOFC electrochemical processes, which may be awkward to simulate given the limited computational resources available on-board in SOFC systems deployed on-field. Suited training procedures and model input selection are proposed to improve NNs accuracy and generalization in predicting voltage variation due to degradation. Particularly, standing the interest in condition monitoring of SOFC performance throughout stack lifetime, input variables were selected in such a way as to account for the time evolution of SOFC stack performance. Different SOFC stacks outputs were tested to assess the generalization capabilities when extending NN prediction to those stacks for which no training data were gathered. The simulations performed on the test sets show the NN ability in simulating real voltage trajectory with satisfactory accuracy, thus confirming the high potential of the proposed model for real-time use on SOFC systems.
•Nonlinear modelling of Solid Oxide Fuel Cell.•Neural Network model for Solid Oxide Fuel Cell performance.•Solid Oxide Fuel Cell model for diagnostic and prognostic applications.•On-field monitoring of Solid Oxide Fuel Cell degradation.</description><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Degradation</subject><subject>Diagnosis</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electric potential</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Neural network</subject><subject>Neural networks</subject><subject>Nonlinear modelling</subject><subject>Solid Oxide Fuel Cell</subject><subject>Solid oxide fuel cells</subject><subject>Stacks</subject><subject>Training</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE2LFDEQhoMoOK7-BclF8NJtpTtfc3MZXBUW9qCeQzqpSMZMp026Xf33ZphVj56Kgqc-3oeQlwx6Bky-OfbHJd_XvJV-ADb2wHvG-COyY1qN3aCEeEx2MCrdKSXGp-RZrUcAYEzBjmzXdMat2NTKep_LN4p1jSe75kJzoJ9yip7e_Ywe6c2GiR4wJbpgCbmc7OyQhjM4dyFi8tRH-3XObYGr1M6eLiX_65clRWfXmOf6nDwJNlV88VCvyJebd58PH7rbu_cfD9e3neNsWDvPQYZJMwQvVYBJBKGGyToLWuwnbd1eM6nRKusmyTQPYhinUYAUwATfq_GKvL7sbY9831oyc4rVtQh2xrxVwzjXSgxy4A2VF9SVXGvBYJbSPJRfhoE5ezZH88ezOXs2wE3z3AZfPdyw1dkUStMS69_pQclR7blo3NsLhy3wj4jFVBexKfSxoFuNz_F_p34DXo2ZKA</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Marra, Dario</creator><creator>Sorrentino, Marco</creator><creator>Pianese, Cesare</creator><creator>Iwanschitz, Boris</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131101</creationdate><title>A neural network estimator of Solid Oxide Fuel Cell performance for on-field diagnostics and prognostics applications</title><author>Marra, Dario ; Sorrentino, Marco ; Pianese, Cesare ; Iwanschitz, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-d406fb81e0d67f0b5f572baca0859b8ac98168ea7acb6184f523b350650154973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Degradation</topic><topic>Diagnosis</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electric potential</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Neural network</topic><topic>Neural networks</topic><topic>Nonlinear modelling</topic><topic>Solid Oxide Fuel Cell</topic><topic>Solid oxide fuel cells</topic><topic>Stacks</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marra, Dario</creatorcontrib><creatorcontrib>Sorrentino, Marco</creatorcontrib><creatorcontrib>Pianese, Cesare</creatorcontrib><creatorcontrib>Iwanschitz, Boris</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marra, Dario</au><au>Sorrentino, Marco</au><au>Pianese, Cesare</au><au>Iwanschitz, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A neural network estimator of Solid Oxide Fuel Cell performance for on-field diagnostics and prognostics applications</atitle><jtitle>Journal of power sources</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>241</volume><spage>320</spage><epage>329</epage><pages>320-329</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>The paper focuses on the experimental identification and validation of a neural network (NN) model of solid oxide fuel cells (SOFC) aimed at implementing on-field diagnosis of SOFC-based distributed power generators. The use of a black-box model is justified by the complexity and the incomplete knowledge of SOFC electrochemical processes, which may be awkward to simulate given the limited computational resources available on-board in SOFC systems deployed on-field. Suited training procedures and model input selection are proposed to improve NNs accuracy and generalization in predicting voltage variation due to degradation. Particularly, standing the interest in condition monitoring of SOFC performance throughout stack lifetime, input variables were selected in such a way as to account for the time evolution of SOFC stack performance. Different SOFC stacks outputs were tested to assess the generalization capabilities when extending NN prediction to those stacks for which no training data were gathered. The simulations performed on the test sets show the NN ability in simulating real voltage trajectory with satisfactory accuracy, thus confirming the high potential of the proposed model for real-time use on SOFC systems.
•Nonlinear modelling of Solid Oxide Fuel Cell.•Neural Network model for Solid Oxide Fuel Cell performance.•Solid Oxide Fuel Cell model for diagnostic and prognostic applications.•On-field monitoring of Solid Oxide Fuel Cell degradation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2013.04.114</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2013-11, Vol.241, p.320-329 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_1448752624 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Computer simulation Degradation Diagnosis Direct energy conversion and energy accumulation Electric potential Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Mathematical analysis Mathematical models Neural network Neural networks Nonlinear modelling Solid Oxide Fuel Cell Solid oxide fuel cells Stacks Training |
title | A neural network estimator of Solid Oxide Fuel Cell performance for on-field diagnostics and prognostics applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T21%3A48%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20neural%20network%20estimator%20of%20Solid%20Oxide%20Fuel%20Cell%20performance%20for%20on-field%20diagnostics%20and%20prognostics%20applications&rft.jtitle=Journal%20of%20power%20sources&rft.au=Marra,%20Dario&rft.date=2013-11-01&rft.volume=241&rft.spage=320&rft.epage=329&rft.pages=320-329&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.04.114&rft_dat=%3Cproquest_cross%3E1448752624%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448752624&rft_id=info:pmid/&rft_els_id=S0378775313007222&rfr_iscdi=true |