Solving the parity problem in one-dimensional cellular automata

The parity problem is a well-known benchmark task in various areas of computer science. Here we consider its version for one-dimensional, binary cellular automata, with periodic boundary conditions: if the initial configuration contains an odd number of 1s, the lattice should converge to all 1s; oth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Natural computing 2013-09, Vol.12 (3), p.323-337
Hauptverfasser: Betel, Heather, de Oliveira, Pedro P. B., Flocchini, Paola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 337
container_issue 3
container_start_page 323
container_title Natural computing
container_volume 12
creator Betel, Heather
de Oliveira, Pedro P. B.
Flocchini, Paola
description The parity problem is a well-known benchmark task in various areas of computer science. Here we consider its version for one-dimensional, binary cellular automata, with periodic boundary conditions: if the initial configuration contains an odd number of 1s, the lattice should converge to all 1s; otherwise, it should converge to all 0s. Since the problem is ill-defined for even-sized lattices (which, by definition, would never be able to converge to 1), it suffices to account for odd-sized lattices only. We are interested in determining the minimal neighbourhood size that allows the problem to be solvable for any arbitrary initial configuration. On the one hand, we show that radius 2 is not sufficient, proving that there exists no radius 2 rule that can solve the parity problem, even in the simpler case of prime-sized lattices. On the other hand, we design a radius 4 rule that converges correctly for any initial configuration and formally prove its correctness. Whether or not there exists a radius 3 rule that solves the parity problem remains an open problem; however, we review recent data against a solution in radius 3, thus providing strong empirical evidence that there may not exist a radius 3 solution even for prime-sized lattices only, contrary to a recent conjecture in the literature.
doi_str_mv 10.1007/s11047-013-9374-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448749886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3041592331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6cc0a345eff0434b600f7a410fa0ef1a0970f887a9308448352cc4c66e16bbd93</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOD5-gLuCGzfRe5s0j5XI4AsGXKjrkHaSsUPbjEkrzL-3pS5EcHXv4juHj0PIBcI1AsibhAhcUkBGNZOc6gOywELmVEstDqdfSCoVqmNyktIWIMeiwAW5fQ3NV91tsv7DZTsb636f7WIoG9dmdZeFztF13bou1aGzTVa5phkaGzM79KG1vT0jR942yZ3_3FPy_nD_tnyiq5fH5-XdilaM656KqgLLeOG8B854KQC8tBzBW3AeLWgJXilpNQPFuWJFXlW8EsKhKMu1Zqfkau4d5T4Hl3rT1mmysZ0LQzI4hiTXSokRvfyDbsMQR_uJQo0iZ4qNFM5UFUNK0Xmzi3Vr494gmGlSM09qxknNNKmZJPI5k0a227j4q_nf0DckyXgP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1419162383</pqid></control><display><type>article</type><title>Solving the parity problem in one-dimensional cellular automata</title><source>SpringerLink Journals - AutoHoldings</source><creator>Betel, Heather ; de Oliveira, Pedro P. B. ; Flocchini, Paola</creator><creatorcontrib>Betel, Heather ; de Oliveira, Pedro P. B. ; Flocchini, Paola</creatorcontrib><description>The parity problem is a well-known benchmark task in various areas of computer science. Here we consider its version for one-dimensional, binary cellular automata, with periodic boundary conditions: if the initial configuration contains an odd number of 1s, the lattice should converge to all 1s; otherwise, it should converge to all 0s. Since the problem is ill-defined for even-sized lattices (which, by definition, would never be able to converge to 1), it suffices to account for odd-sized lattices only. We are interested in determining the minimal neighbourhood size that allows the problem to be solvable for any arbitrary initial configuration. On the one hand, we show that radius 2 is not sufficient, proving that there exists no radius 2 rule that can solve the parity problem, even in the simpler case of prime-sized lattices. On the other hand, we design a radius 4 rule that converges correctly for any initial configuration and formally prove its correctness. Whether or not there exists a radius 3 rule that solves the parity problem remains an open problem; however, we review recent data against a solution in radius 3, thus providing strong empirical evidence that there may not exist a radius 3 solution even for prime-sized lattices only, contrary to a recent conjecture in the literature.</description><identifier>ISSN: 1567-7818</identifier><identifier>EISSN: 1572-9796</identifier><identifier>DOI: 10.1007/s11047-013-9374-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Benchmarking ; Boundary conditions ; Cellular automata ; Cellular biology ; Complex Systems ; Computer Science ; Density ; Empirical analysis ; Evolutionary Biology ; Lattices ; Mathematical models ; Parity ; Problem solving ; Processor Architectures ; Tasks ; Theory of Computation</subject><ispartof>Natural computing, 2013-09, Vol.12 (3), p.323-337</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6cc0a345eff0434b600f7a410fa0ef1a0970f887a9308448352cc4c66e16bbd93</citedby><cites>FETCH-LOGICAL-c349t-6cc0a345eff0434b600f7a410fa0ef1a0970f887a9308448352cc4c66e16bbd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11047-013-9374-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11047-013-9374-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Betel, Heather</creatorcontrib><creatorcontrib>de Oliveira, Pedro P. B.</creatorcontrib><creatorcontrib>Flocchini, Paola</creatorcontrib><title>Solving the parity problem in one-dimensional cellular automata</title><title>Natural computing</title><addtitle>Nat Comput</addtitle><description>The parity problem is a well-known benchmark task in various areas of computer science. Here we consider its version for one-dimensional, binary cellular automata, with periodic boundary conditions: if the initial configuration contains an odd number of 1s, the lattice should converge to all 1s; otherwise, it should converge to all 0s. Since the problem is ill-defined for even-sized lattices (which, by definition, would never be able to converge to 1), it suffices to account for odd-sized lattices only. We are interested in determining the minimal neighbourhood size that allows the problem to be solvable for any arbitrary initial configuration. On the one hand, we show that radius 2 is not sufficient, proving that there exists no radius 2 rule that can solve the parity problem, even in the simpler case of prime-sized lattices. On the other hand, we design a radius 4 rule that converges correctly for any initial configuration and formally prove its correctness. Whether or not there exists a radius 3 rule that solves the parity problem remains an open problem; however, we review recent data against a solution in radius 3, thus providing strong empirical evidence that there may not exist a radius 3 solution even for prime-sized lattices only, contrary to a recent conjecture in the literature.</description><subject>Artificial Intelligence</subject><subject>Benchmarking</subject><subject>Boundary conditions</subject><subject>Cellular automata</subject><subject>Cellular biology</subject><subject>Complex Systems</subject><subject>Computer Science</subject><subject>Density</subject><subject>Empirical analysis</subject><subject>Evolutionary Biology</subject><subject>Lattices</subject><subject>Mathematical models</subject><subject>Parity</subject><subject>Problem solving</subject><subject>Processor Architectures</subject><subject>Tasks</subject><subject>Theory of Computation</subject><issn>1567-7818</issn><issn>1572-9796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAUhYMoOD5-gLuCGzfRe5s0j5XI4AsGXKjrkHaSsUPbjEkrzL-3pS5EcHXv4juHj0PIBcI1AsibhAhcUkBGNZOc6gOywELmVEstDqdfSCoVqmNyktIWIMeiwAW5fQ3NV91tsv7DZTsb636f7WIoG9dmdZeFztF13bou1aGzTVa5phkaGzM79KG1vT0jR942yZ3_3FPy_nD_tnyiq5fH5-XdilaM656KqgLLeOG8B854KQC8tBzBW3AeLWgJXilpNQPFuWJFXlW8EsKhKMu1Zqfkau4d5T4Hl3rT1mmysZ0LQzI4hiTXSokRvfyDbsMQR_uJQo0iZ4qNFM5UFUNK0Xmzi3Vr494gmGlSM09qxknNNKmZJPI5k0a227j4q_nf0DckyXgP</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Betel, Heather</creator><creator>de Oliveira, Pedro P. B.</creator><creator>Flocchini, Paola</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20130901</creationdate><title>Solving the parity problem in one-dimensional cellular automata</title><author>Betel, Heather ; de Oliveira, Pedro P. B. ; Flocchini, Paola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6cc0a345eff0434b600f7a410fa0ef1a0970f887a9308448352cc4c66e16bbd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial Intelligence</topic><topic>Benchmarking</topic><topic>Boundary conditions</topic><topic>Cellular automata</topic><topic>Cellular biology</topic><topic>Complex Systems</topic><topic>Computer Science</topic><topic>Density</topic><topic>Empirical analysis</topic><topic>Evolutionary Biology</topic><topic>Lattices</topic><topic>Mathematical models</topic><topic>Parity</topic><topic>Problem solving</topic><topic>Processor Architectures</topic><topic>Tasks</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Betel, Heather</creatorcontrib><creatorcontrib>de Oliveira, Pedro P. B.</creatorcontrib><creatorcontrib>Flocchini, Paola</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Natural computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betel, Heather</au><au>de Oliveira, Pedro P. B.</au><au>Flocchini, Paola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving the parity problem in one-dimensional cellular automata</atitle><jtitle>Natural computing</jtitle><stitle>Nat Comput</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>12</volume><issue>3</issue><spage>323</spage><epage>337</epage><pages>323-337</pages><issn>1567-7818</issn><eissn>1572-9796</eissn><abstract>The parity problem is a well-known benchmark task in various areas of computer science. Here we consider its version for one-dimensional, binary cellular automata, with periodic boundary conditions: if the initial configuration contains an odd number of 1s, the lattice should converge to all 1s; otherwise, it should converge to all 0s. Since the problem is ill-defined for even-sized lattices (which, by definition, would never be able to converge to 1), it suffices to account for odd-sized lattices only. We are interested in determining the minimal neighbourhood size that allows the problem to be solvable for any arbitrary initial configuration. On the one hand, we show that radius 2 is not sufficient, proving that there exists no radius 2 rule that can solve the parity problem, even in the simpler case of prime-sized lattices. On the other hand, we design a radius 4 rule that converges correctly for any initial configuration and formally prove its correctness. Whether or not there exists a radius 3 rule that solves the parity problem remains an open problem; however, we review recent data against a solution in radius 3, thus providing strong empirical evidence that there may not exist a radius 3 solution even for prime-sized lattices only, contrary to a recent conjecture in the literature.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11047-013-9374-9</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1567-7818
ispartof Natural computing, 2013-09, Vol.12 (3), p.323-337
issn 1567-7818
1572-9796
language eng
recordid cdi_proquest_miscellaneous_1448749886
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Benchmarking
Boundary conditions
Cellular automata
Cellular biology
Complex Systems
Computer Science
Density
Empirical analysis
Evolutionary Biology
Lattices
Mathematical models
Parity
Problem solving
Processor Architectures
Tasks
Theory of Computation
title Solving the parity problem in one-dimensional cellular automata
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A31%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20the%20parity%20problem%20in%20one-dimensional%20cellular%20automata&rft.jtitle=Natural%20computing&rft.au=Betel,%20Heather&rft.date=2013-09-01&rft.volume=12&rft.issue=3&rft.spage=323&rft.epage=337&rft.pages=323-337&rft.issn=1567-7818&rft.eissn=1572-9796&rft_id=info:doi/10.1007/s11047-013-9374-9&rft_dat=%3Cproquest_cross%3E3041592331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1419162383&rft_id=info:pmid/&rfr_iscdi=true