Solving the parity problem in one-dimensional cellular automata
The parity problem is a well-known benchmark task in various areas of computer science. Here we consider its version for one-dimensional, binary cellular automata, with periodic boundary conditions: if the initial configuration contains an odd number of 1s, the lattice should converge to all 1s; oth...
Gespeichert in:
Veröffentlicht in: | Natural computing 2013-09, Vol.12 (3), p.323-337 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 337 |
---|---|
container_issue | 3 |
container_start_page | 323 |
container_title | Natural computing |
container_volume | 12 |
creator | Betel, Heather de Oliveira, Pedro P. B. Flocchini, Paola |
description | The parity problem is a well-known benchmark task in various areas of computer science. Here we consider its version for one-dimensional, binary cellular automata, with periodic boundary conditions: if the initial configuration contains an odd number of 1s, the lattice should converge to all 1s; otherwise, it should converge to all 0s. Since the problem is ill-defined for even-sized lattices (which, by definition, would never be able to converge to 1), it suffices to account for odd-sized lattices only. We are interested in determining the minimal neighbourhood size that allows the problem to be solvable for any arbitrary initial configuration. On the one hand, we show that radius 2 is not sufficient, proving that there exists no radius 2 rule that can solve the parity problem, even in the simpler case of prime-sized lattices. On the other hand, we design a radius 4 rule that converges correctly for any initial configuration and formally prove its correctness. Whether or not there exists a radius 3 rule that solves the parity problem remains an open problem; however, we review recent data against a solution in radius 3, thus providing strong empirical evidence that there may not exist a radius 3 solution even for prime-sized lattices only, contrary to a recent conjecture in the literature. |
doi_str_mv | 10.1007/s11047-013-9374-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448749886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3041592331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6cc0a345eff0434b600f7a410fa0ef1a0970f887a9308448352cc4c66e16bbd93</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOD5-gLuCGzfRe5s0j5XI4AsGXKjrkHaSsUPbjEkrzL-3pS5EcHXv4juHj0PIBcI1AsibhAhcUkBGNZOc6gOywELmVEstDqdfSCoVqmNyktIWIMeiwAW5fQ3NV91tsv7DZTsb636f7WIoG9dmdZeFztF13bou1aGzTVa5phkaGzM79KG1vT0jR942yZ3_3FPy_nD_tnyiq5fH5-XdilaM656KqgLLeOG8B854KQC8tBzBW3AeLWgJXilpNQPFuWJFXlW8EsKhKMu1Zqfkau4d5T4Hl3rT1mmysZ0LQzI4hiTXSokRvfyDbsMQR_uJQo0iZ4qNFM5UFUNK0Xmzi3Vr494gmGlSM09qxknNNKmZJPI5k0a227j4q_nf0DckyXgP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1419162383</pqid></control><display><type>article</type><title>Solving the parity problem in one-dimensional cellular automata</title><source>SpringerLink Journals - AutoHoldings</source><creator>Betel, Heather ; de Oliveira, Pedro P. B. ; Flocchini, Paola</creator><creatorcontrib>Betel, Heather ; de Oliveira, Pedro P. B. ; Flocchini, Paola</creatorcontrib><description>The parity problem is a well-known benchmark task in various areas of computer science. Here we consider its version for one-dimensional, binary cellular automata, with periodic boundary conditions: if the initial configuration contains an odd number of 1s, the lattice should converge to all 1s; otherwise, it should converge to all 0s. Since the problem is ill-defined for even-sized lattices (which, by definition, would never be able to converge to 1), it suffices to account for odd-sized lattices only. We are interested in determining the minimal neighbourhood size that allows the problem to be solvable for any arbitrary initial configuration. On the one hand, we show that radius 2 is not sufficient, proving that there exists no radius 2 rule that can solve the parity problem, even in the simpler case of prime-sized lattices. On the other hand, we design a radius 4 rule that converges correctly for any initial configuration and formally prove its correctness. Whether or not there exists a radius 3 rule that solves the parity problem remains an open problem; however, we review recent data against a solution in radius 3, thus providing strong empirical evidence that there may not exist a radius 3 solution even for prime-sized lattices only, contrary to a recent conjecture in the literature.</description><identifier>ISSN: 1567-7818</identifier><identifier>EISSN: 1572-9796</identifier><identifier>DOI: 10.1007/s11047-013-9374-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Benchmarking ; Boundary conditions ; Cellular automata ; Cellular biology ; Complex Systems ; Computer Science ; Density ; Empirical analysis ; Evolutionary Biology ; Lattices ; Mathematical models ; Parity ; Problem solving ; Processor Architectures ; Tasks ; Theory of Computation</subject><ispartof>Natural computing, 2013-09, Vol.12 (3), p.323-337</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6cc0a345eff0434b600f7a410fa0ef1a0970f887a9308448352cc4c66e16bbd93</citedby><cites>FETCH-LOGICAL-c349t-6cc0a345eff0434b600f7a410fa0ef1a0970f887a9308448352cc4c66e16bbd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11047-013-9374-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11047-013-9374-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Betel, Heather</creatorcontrib><creatorcontrib>de Oliveira, Pedro P. B.</creatorcontrib><creatorcontrib>Flocchini, Paola</creatorcontrib><title>Solving the parity problem in one-dimensional cellular automata</title><title>Natural computing</title><addtitle>Nat Comput</addtitle><description>The parity problem is a well-known benchmark task in various areas of computer science. Here we consider its version for one-dimensional, binary cellular automata, with periodic boundary conditions: if the initial configuration contains an odd number of 1s, the lattice should converge to all 1s; otherwise, it should converge to all 0s. Since the problem is ill-defined for even-sized lattices (which, by definition, would never be able to converge to 1), it suffices to account for odd-sized lattices only. We are interested in determining the minimal neighbourhood size that allows the problem to be solvable for any arbitrary initial configuration. On the one hand, we show that radius 2 is not sufficient, proving that there exists no radius 2 rule that can solve the parity problem, even in the simpler case of prime-sized lattices. On the other hand, we design a radius 4 rule that converges correctly for any initial configuration and formally prove its correctness. Whether or not there exists a radius 3 rule that solves the parity problem remains an open problem; however, we review recent data against a solution in radius 3, thus providing strong empirical evidence that there may not exist a radius 3 solution even for prime-sized lattices only, contrary to a recent conjecture in the literature.</description><subject>Artificial Intelligence</subject><subject>Benchmarking</subject><subject>Boundary conditions</subject><subject>Cellular automata</subject><subject>Cellular biology</subject><subject>Complex Systems</subject><subject>Computer Science</subject><subject>Density</subject><subject>Empirical analysis</subject><subject>Evolutionary Biology</subject><subject>Lattices</subject><subject>Mathematical models</subject><subject>Parity</subject><subject>Problem solving</subject><subject>Processor Architectures</subject><subject>Tasks</subject><subject>Theory of Computation</subject><issn>1567-7818</issn><issn>1572-9796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAUhYMoOD5-gLuCGzfRe5s0j5XI4AsGXKjrkHaSsUPbjEkrzL-3pS5EcHXv4juHj0PIBcI1AsibhAhcUkBGNZOc6gOywELmVEstDqdfSCoVqmNyktIWIMeiwAW5fQ3NV91tsv7DZTsb636f7WIoG9dmdZeFztF13bou1aGzTVa5phkaGzM79KG1vT0jR942yZ3_3FPy_nD_tnyiq5fH5-XdilaM656KqgLLeOG8B854KQC8tBzBW3AeLWgJXilpNQPFuWJFXlW8EsKhKMu1Zqfkau4d5T4Hl3rT1mmysZ0LQzI4hiTXSokRvfyDbsMQR_uJQo0iZ4qNFM5UFUNK0Xmzi3Vr494gmGlSM09qxknNNKmZJPI5k0a227j4q_nf0DckyXgP</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Betel, Heather</creator><creator>de Oliveira, Pedro P. B.</creator><creator>Flocchini, Paola</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20130901</creationdate><title>Solving the parity problem in one-dimensional cellular automata</title><author>Betel, Heather ; de Oliveira, Pedro P. B. ; Flocchini, Paola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6cc0a345eff0434b600f7a410fa0ef1a0970f887a9308448352cc4c66e16bbd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial Intelligence</topic><topic>Benchmarking</topic><topic>Boundary conditions</topic><topic>Cellular automata</topic><topic>Cellular biology</topic><topic>Complex Systems</topic><topic>Computer Science</topic><topic>Density</topic><topic>Empirical analysis</topic><topic>Evolutionary Biology</topic><topic>Lattices</topic><topic>Mathematical models</topic><topic>Parity</topic><topic>Problem solving</topic><topic>Processor Architectures</topic><topic>Tasks</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Betel, Heather</creatorcontrib><creatorcontrib>de Oliveira, Pedro P. B.</creatorcontrib><creatorcontrib>Flocchini, Paola</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Natural computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betel, Heather</au><au>de Oliveira, Pedro P. B.</au><au>Flocchini, Paola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving the parity problem in one-dimensional cellular automata</atitle><jtitle>Natural computing</jtitle><stitle>Nat Comput</stitle><date>2013-09-01</date><risdate>2013</risdate><volume>12</volume><issue>3</issue><spage>323</spage><epage>337</epage><pages>323-337</pages><issn>1567-7818</issn><eissn>1572-9796</eissn><abstract>The parity problem is a well-known benchmark task in various areas of computer science. Here we consider its version for one-dimensional, binary cellular automata, with periodic boundary conditions: if the initial configuration contains an odd number of 1s, the lattice should converge to all 1s; otherwise, it should converge to all 0s. Since the problem is ill-defined for even-sized lattices (which, by definition, would never be able to converge to 1), it suffices to account for odd-sized lattices only. We are interested in determining the minimal neighbourhood size that allows the problem to be solvable for any arbitrary initial configuration. On the one hand, we show that radius 2 is not sufficient, proving that there exists no radius 2 rule that can solve the parity problem, even in the simpler case of prime-sized lattices. On the other hand, we design a radius 4 rule that converges correctly for any initial configuration and formally prove its correctness. Whether or not there exists a radius 3 rule that solves the parity problem remains an open problem; however, we review recent data against a solution in radius 3, thus providing strong empirical evidence that there may not exist a radius 3 solution even for prime-sized lattices only, contrary to a recent conjecture in the literature.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11047-013-9374-9</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-7818 |
ispartof | Natural computing, 2013-09, Vol.12 (3), p.323-337 |
issn | 1567-7818 1572-9796 |
language | eng |
recordid | cdi_proquest_miscellaneous_1448749886 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Benchmarking Boundary conditions Cellular automata Cellular biology Complex Systems Computer Science Density Empirical analysis Evolutionary Biology Lattices Mathematical models Parity Problem solving Processor Architectures Tasks Theory of Computation |
title | Solving the parity problem in one-dimensional cellular automata |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A31%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20the%20parity%20problem%20in%20one-dimensional%20cellular%20automata&rft.jtitle=Natural%20computing&rft.au=Betel,%20Heather&rft.date=2013-09-01&rft.volume=12&rft.issue=3&rft.spage=323&rft.epage=337&rft.pages=323-337&rft.issn=1567-7818&rft.eissn=1572-9796&rft_id=info:doi/10.1007/s11047-013-9374-9&rft_dat=%3Cproquest_cross%3E3041592331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1419162383&rft_id=info:pmid/&rfr_iscdi=true |