Bio-Inspired Synthesis of High-Performance Nanocomposite Catalysts for Hydrogen Oxidation

A biologically inspired synthesis method is presented as a new tool for the design of novel electrochemically active materials, focusing on the advantages for fuel cell development. The need for cost‐effective, high‐performance materials is driving contemporary fuel cell research, with the expectati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2013-09, Vol.23 (36), p.4585-4592
Hauptverfasser: Kong, Chang Sun, Zhang, Hong-Li, Somodi, Ferenc, Morse, Daniel E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4592
container_issue 36
container_start_page 4585
container_title Advanced functional materials
container_volume 23
creator Kong, Chang Sun
Zhang, Hong-Li
Somodi, Ferenc
Morse, Daniel E.
description A biologically inspired synthesis method is presented as a new tool for the design of novel electrochemically active materials, focusing on the advantages for fuel cell development. The need for cost‐effective, high‐performance materials is driving contemporary fuel cell research, with the expectation that advances in synthetic methods will be necessary for commercialization of this energy technology. Highly active electrocatalysts for proton‐exchange‐membrane (PEM) fuel cells are being developed, by combining a kinetically controlled synthesis method of the nanocrystalline metal catalyst with the mesoscale assembly of two morphologically different carbon building blocks of the supporting matrix. These methods provide access to new combinations of porosity, conductivity and electrochemical hydrogen oxidation. The relationships between the porous morphologies of the carbon matrices, the sizes of the platinum nanocrystals and their resulting electrochemical activities are discussed, correlating these with the relevant fuel cell principles. Biologically inspired, kinetically controlled synthesis is used to develop a new family of nanocrystalline Pt‐based catalytic electrodes. A novel carbon‐carbon composite of carbon black and multiwall carbon nanotubes is formed for the control of mesoscale morphology and used as the matrix for nucleation and growth of nanocrystalline Pt, providing access to new combinations of porosity, conductivity and electrochemical hydrogen oxidation.
doi_str_mv 10.1002/adfm.201203882
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448749587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1448749587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3602-b6034f0705b69c6ff3f752b42892ace399caba00f24ac2f9ca1eb3d83fcb24893</originalsourceid><addsrcrecordid>eNqFkLtOwzAUQCMEEqWwMmdkSfEriTOWQh9SHyDek-U4dmtI4mCnovl7UgVVbEz3XumcOxzPu4RgAAFA1zxTxQABiACmFB15PRjBKMAA0ePDDt9OvTPnPgCAcYxJz3u_0SaYla7SVmb-Y1PWG-m0843yp3q9Ce6lVcYWvBTSX_LSCFNUxula-iNe87xxtfNbwJ82mTVrWfqrnc54rU157p0onjt58Tv73vP47mk0DearyWw0nAcCRwAFaQQwUSAGYRolIlIKqzhEKUE0QVxInCSCpxwAhQgXSLUXlCnOKFYiRYQmuO9ddX8ra7620tWs0E7IPOelNFvHICE0JklI4xYddKiwxjkrFausLrhtGARs35DtG7JDw1ZIOuFb57L5h2bD2_Hirxt0rna13B1cbj9ZFOM4ZK_LCXt5WNxP6GjJAP4BVGyGPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448749587</pqid></control><display><type>article</type><title>Bio-Inspired Synthesis of High-Performance Nanocomposite Catalysts for Hydrogen Oxidation</title><source>Access via Wiley Online Library</source><creator>Kong, Chang Sun ; Zhang, Hong-Li ; Somodi, Ferenc ; Morse, Daniel E.</creator><creatorcontrib>Kong, Chang Sun ; Zhang, Hong-Li ; Somodi, Ferenc ; Morse, Daniel E.</creatorcontrib><description>A biologically inspired synthesis method is presented as a new tool for the design of novel electrochemically active materials, focusing on the advantages for fuel cell development. The need for cost‐effective, high‐performance materials is driving contemporary fuel cell research, with the expectation that advances in synthetic methods will be necessary for commercialization of this energy technology. Highly active electrocatalysts for proton‐exchange‐membrane (PEM) fuel cells are being developed, by combining a kinetically controlled synthesis method of the nanocrystalline metal catalyst with the mesoscale assembly of two morphologically different carbon building blocks of the supporting matrix. These methods provide access to new combinations of porosity, conductivity and electrochemical hydrogen oxidation. The relationships between the porous morphologies of the carbon matrices, the sizes of the platinum nanocrystals and their resulting electrochemical activities are discussed, correlating these with the relevant fuel cell principles. Biologically inspired, kinetically controlled synthesis is used to develop a new family of nanocrystalline Pt‐based catalytic electrodes. A novel carbon‐carbon composite of carbon black and multiwall carbon nanotubes is formed for the control of mesoscale morphology and used as the matrix for nucleation and growth of nanocrystalline Pt, providing access to new combinations of porosity, conductivity and electrochemical hydrogen oxidation.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201203882</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>bioinspired synthesis ; carbon-carbon composite ; Catalysis ; Catalysts ; Fuel cells ; mesoscale assembly ; Nanocrystals ; Nanostructure ; Oxidation ; Platinum ; proton exchange membrane fuel cell ; Synthesis ; three-phase boundary</subject><ispartof>Advanced functional materials, 2013-09, Vol.23 (36), p.4585-4592</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3602-b6034f0705b69c6ff3f752b42892ace399caba00f24ac2f9ca1eb3d83fcb24893</citedby><cites>FETCH-LOGICAL-c3602-b6034f0705b69c6ff3f752b42892ace399caba00f24ac2f9ca1eb3d83fcb24893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201203882$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201203882$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Kong, Chang Sun</creatorcontrib><creatorcontrib>Zhang, Hong-Li</creatorcontrib><creatorcontrib>Somodi, Ferenc</creatorcontrib><creatorcontrib>Morse, Daniel E.</creatorcontrib><title>Bio-Inspired Synthesis of High-Performance Nanocomposite Catalysts for Hydrogen Oxidation</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>A biologically inspired synthesis method is presented as a new tool for the design of novel electrochemically active materials, focusing on the advantages for fuel cell development. The need for cost‐effective, high‐performance materials is driving contemporary fuel cell research, with the expectation that advances in synthetic methods will be necessary for commercialization of this energy technology. Highly active electrocatalysts for proton‐exchange‐membrane (PEM) fuel cells are being developed, by combining a kinetically controlled synthesis method of the nanocrystalline metal catalyst with the mesoscale assembly of two morphologically different carbon building blocks of the supporting matrix. These methods provide access to new combinations of porosity, conductivity and electrochemical hydrogen oxidation. The relationships between the porous morphologies of the carbon matrices, the sizes of the platinum nanocrystals and their resulting electrochemical activities are discussed, correlating these with the relevant fuel cell principles. Biologically inspired, kinetically controlled synthesis is used to develop a new family of nanocrystalline Pt‐based catalytic electrodes. A novel carbon‐carbon composite of carbon black and multiwall carbon nanotubes is formed for the control of mesoscale morphology and used as the matrix for nucleation and growth of nanocrystalline Pt, providing access to new combinations of porosity, conductivity and electrochemical hydrogen oxidation.</description><subject>bioinspired synthesis</subject><subject>carbon-carbon composite</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Fuel cells</subject><subject>mesoscale assembly</subject><subject>Nanocrystals</subject><subject>Nanostructure</subject><subject>Oxidation</subject><subject>Platinum</subject><subject>proton exchange membrane fuel cell</subject><subject>Synthesis</subject><subject>three-phase boundary</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUQCMEEqWwMmdkSfEriTOWQh9SHyDek-U4dmtI4mCnovl7UgVVbEz3XumcOxzPu4RgAAFA1zxTxQABiACmFB15PRjBKMAA0ePDDt9OvTPnPgCAcYxJz3u_0SaYla7SVmb-Y1PWG-m0843yp3q9Ce6lVcYWvBTSX_LSCFNUxula-iNe87xxtfNbwJ82mTVrWfqrnc54rU157p0onjt58Tv73vP47mk0DearyWw0nAcCRwAFaQQwUSAGYRolIlIKqzhEKUE0QVxInCSCpxwAhQgXSLUXlCnOKFYiRYQmuO9ddX8ra7620tWs0E7IPOelNFvHICE0JklI4xYddKiwxjkrFausLrhtGARs35DtG7JDw1ZIOuFb57L5h2bD2_Hirxt0rna13B1cbj9ZFOM4ZK_LCXt5WNxP6GjJAP4BVGyGPQ</recordid><startdate>20130925</startdate><enddate>20130925</enddate><creator>Kong, Chang Sun</creator><creator>Zhang, Hong-Li</creator><creator>Somodi, Ferenc</creator><creator>Morse, Daniel E.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130925</creationdate><title>Bio-Inspired Synthesis of High-Performance Nanocomposite Catalysts for Hydrogen Oxidation</title><author>Kong, Chang Sun ; Zhang, Hong-Li ; Somodi, Ferenc ; Morse, Daniel E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3602-b6034f0705b69c6ff3f752b42892ace399caba00f24ac2f9ca1eb3d83fcb24893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>bioinspired synthesis</topic><topic>carbon-carbon composite</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Fuel cells</topic><topic>mesoscale assembly</topic><topic>Nanocrystals</topic><topic>Nanostructure</topic><topic>Oxidation</topic><topic>Platinum</topic><topic>proton exchange membrane fuel cell</topic><topic>Synthesis</topic><topic>three-phase boundary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Chang Sun</creatorcontrib><creatorcontrib>Zhang, Hong-Li</creatorcontrib><creatorcontrib>Somodi, Ferenc</creatorcontrib><creatorcontrib>Morse, Daniel E.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Chang Sun</au><au>Zhang, Hong-Li</au><au>Somodi, Ferenc</au><au>Morse, Daniel E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-Inspired Synthesis of High-Performance Nanocomposite Catalysts for Hydrogen Oxidation</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2013-09-25</date><risdate>2013</risdate><volume>23</volume><issue>36</issue><spage>4585</spage><epage>4592</epage><pages>4585-4592</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>A biologically inspired synthesis method is presented as a new tool for the design of novel electrochemically active materials, focusing on the advantages for fuel cell development. The need for cost‐effective, high‐performance materials is driving contemporary fuel cell research, with the expectation that advances in synthetic methods will be necessary for commercialization of this energy technology. Highly active electrocatalysts for proton‐exchange‐membrane (PEM) fuel cells are being developed, by combining a kinetically controlled synthesis method of the nanocrystalline metal catalyst with the mesoscale assembly of two morphologically different carbon building blocks of the supporting matrix. These methods provide access to new combinations of porosity, conductivity and electrochemical hydrogen oxidation. The relationships between the porous morphologies of the carbon matrices, the sizes of the platinum nanocrystals and their resulting electrochemical activities are discussed, correlating these with the relevant fuel cell principles. Biologically inspired, kinetically controlled synthesis is used to develop a new family of nanocrystalline Pt‐based catalytic electrodes. A novel carbon‐carbon composite of carbon black and multiwall carbon nanotubes is formed for the control of mesoscale morphology and used as the matrix for nucleation and growth of nanocrystalline Pt, providing access to new combinations of porosity, conductivity and electrochemical hydrogen oxidation.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.201203882</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2013-09, Vol.23 (36), p.4585-4592
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_1448749587
source Access via Wiley Online Library
subjects bioinspired synthesis
carbon-carbon composite
Catalysis
Catalysts
Fuel cells
mesoscale assembly
Nanocrystals
Nanostructure
Oxidation
Platinum
proton exchange membrane fuel cell
Synthesis
three-phase boundary
title Bio-Inspired Synthesis of High-Performance Nanocomposite Catalysts for Hydrogen Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T23%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-Inspired%20Synthesis%20of%20High-Performance%20Nanocomposite%20Catalysts%20for%20Hydrogen%20Oxidation&rft.jtitle=Advanced%20functional%20materials&rft.au=Kong,%20Chang%20Sun&rft.date=2013-09-25&rft.volume=23&rft.issue=36&rft.spage=4585&rft.epage=4592&rft.pages=4585-4592&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201203882&rft_dat=%3Cproquest_cross%3E1448749587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448749587&rft_id=info:pmid/&rfr_iscdi=true