Lattice orientation control of lithium cobalt oxide cathode film for all-solid-state thin film batteries

For the application to all-solid-state thin film batteries, LiCoO2 thin films are deposited by RF-sputtering with controlling the lattice orientations to maximize lithium-ion diffusivity in film textures. The nano-sized crystalline grains grow up with the (003) preferred orientation parallel to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2013-03, Vol.226, p.186-190
Hauptverfasser: Yoon, Yongsub, Park, Chanhwi, Kim, Junghoon, Shin, Dongwook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190
container_issue
container_start_page 186
container_title Journal of power sources
container_volume 226
creator Yoon, Yongsub
Park, Chanhwi
Kim, Junghoon
Shin, Dongwook
description For the application to all-solid-state thin film batteries, LiCoO2 thin films are deposited by RF-sputtering with controlling the lattice orientations to maximize lithium-ion diffusivity in film textures. The nano-sized crystalline grains grow up with the (003) preferred orientation parallel to the substrates at room temperature due to the lowest surface energy of this atomic plane. However, because the surface energy difference of atomic planes of LiCoO2 reduces with increasing substrate temperature, the influence of surface energy becomes weaker at high temperature. The LiCoO2 thin films with the (110) preferred orientation are obtained at higher temperatures by dominant influence from the lowest the volume strain energy of this orientation. To take advance of this orientation effect in full cell, the influences of the metallic current collector layer on the structural properties of sputtered cathode are investigated. It turns out that the Li2O buffer layers between the cathode films and the metallic current collector layers can suppress the formation of lithium-deficient phase, Co3O4, and the growth of (003) plane by reducing the lattice match between of LiCoO2 plane and Al(111) plane. The LiCoO2 films with the controlled orientation show enhanced rate performance owing to improved interfacial resistance and lithium-ion conductivity. ► Lithium cobalt oxide thin film cathodes for the all-solid-state thin film batteries. ► The enhancement of ionic and electrical conductivities by controlling the lattice orientation. ► The improved rate performance of the cathode films with the controlled grain growth.
doi_str_mv 10.1016/j.jpowsour.2012.10.094
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448741310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775312016606</els_id><sourcerecordid>1448741310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-8370f64d4266c236f1de86a9e19c9118ccca888cedb420c89fa6b9d3dd9380cd3</originalsourceid><addsrcrecordid>eNqFkEFvGyEQhVHUSHHd_IWIS6Re1mUWvLC3VlbaVLLUS3tGeAAZCy8O4Lb598Gyk2tOIz3eezN8hNwBWwCD4ctusTukfyUd86Jn0DdxwUZxRWagJO96uVx-IDPGpeqkXPIb8rGUHWMMQLIZ2a5NrQEdTTm4qZoa0kQxTTWnSJOnMdRtOO6btDGx0vQ_WEfR1G1q04e4pz5lamLsSorBdqVVONoy0_l10-pdqy6fyLU3sbjby5yTP98ffq8eu_WvHz9X39YdCtXXTnHJ_CCs6IcBez54sE4NZnQw4gigENEopdDZjegZqtGbYTNabu3IFUPL5-TzufeQ09PRlar3oaCL0UwuHYsGIZQUwIE163C2Yk6lZOf1IYe9yc8amD6h1Tv9ilaf0J70hrYF7y87TEETfTYThvKW7iUAF3Jsvq9nn2sf_htc1gUb5XZ8yA6rtim8t-oFoJSVRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448741310</pqid></control><display><type>article</type><title>Lattice orientation control of lithium cobalt oxide cathode film for all-solid-state thin film batteries</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yoon, Yongsub ; Park, Chanhwi ; Kim, Junghoon ; Shin, Dongwook</creator><creatorcontrib>Yoon, Yongsub ; Park, Chanhwi ; Kim, Junghoon ; Shin, Dongwook</creatorcontrib><description>For the application to all-solid-state thin film batteries, LiCoO2 thin films are deposited by RF-sputtering with controlling the lattice orientations to maximize lithium-ion diffusivity in film textures. The nano-sized crystalline grains grow up with the (003) preferred orientation parallel to the substrates at room temperature due to the lowest surface energy of this atomic plane. However, because the surface energy difference of atomic planes of LiCoO2 reduces with increasing substrate temperature, the influence of surface energy becomes weaker at high temperature. The LiCoO2 thin films with the (110) preferred orientation are obtained at higher temperatures by dominant influence from the lowest the volume strain energy of this orientation. To take advance of this orientation effect in full cell, the influences of the metallic current collector layer on the structural properties of sputtered cathode are investigated. It turns out that the Li2O buffer layers between the cathode films and the metallic current collector layers can suppress the formation of lithium-deficient phase, Co3O4, and the growth of (003) plane by reducing the lattice match between of LiCoO2 plane and Al(111) plane. The LiCoO2 films with the controlled orientation show enhanced rate performance owing to improved interfacial resistance and lithium-ion conductivity. ► Lithium cobalt oxide thin film cathodes for the all-solid-state thin film batteries. ► The enhancement of ionic and electrical conductivities by controlling the lattice orientation. ► The improved rate performance of the cathode films with the controlled grain growth.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2012.10.094</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Exact sciences and technology ; Lattice orientation control ; Lithium cobalt oxide ; Lithium-ion diffusivity ; Radio-frequency magnetron sputtering ; Thin film batteries</subject><ispartof>Journal of power sources, 2013-03, Vol.226, p.186-190</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-8370f64d4266c236f1de86a9e19c9118ccca888cedb420c89fa6b9d3dd9380cd3</citedby><cites>FETCH-LOGICAL-c482t-8370f64d4266c236f1de86a9e19c9118ccca888cedb420c89fa6b9d3dd9380cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2012.10.094$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27113479$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoon, Yongsub</creatorcontrib><creatorcontrib>Park, Chanhwi</creatorcontrib><creatorcontrib>Kim, Junghoon</creatorcontrib><creatorcontrib>Shin, Dongwook</creatorcontrib><title>Lattice orientation control of lithium cobalt oxide cathode film for all-solid-state thin film batteries</title><title>Journal of power sources</title><description>For the application to all-solid-state thin film batteries, LiCoO2 thin films are deposited by RF-sputtering with controlling the lattice orientations to maximize lithium-ion diffusivity in film textures. The nano-sized crystalline grains grow up with the (003) preferred orientation parallel to the substrates at room temperature due to the lowest surface energy of this atomic plane. However, because the surface energy difference of atomic planes of LiCoO2 reduces with increasing substrate temperature, the influence of surface energy becomes weaker at high temperature. The LiCoO2 thin films with the (110) preferred orientation are obtained at higher temperatures by dominant influence from the lowest the volume strain energy of this orientation. To take advance of this orientation effect in full cell, the influences of the metallic current collector layer on the structural properties of sputtered cathode are investigated. It turns out that the Li2O buffer layers between the cathode films and the metallic current collector layers can suppress the formation of lithium-deficient phase, Co3O4, and the growth of (003) plane by reducing the lattice match between of LiCoO2 plane and Al(111) plane. The LiCoO2 films with the controlled orientation show enhanced rate performance owing to improved interfacial resistance and lithium-ion conductivity. ► Lithium cobalt oxide thin film cathodes for the all-solid-state thin film batteries. ► The enhancement of ionic and electrical conductivities by controlling the lattice orientation. ► The improved rate performance of the cathode films with the controlled grain growth.</description><subject>Applied sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Exact sciences and technology</subject><subject>Lattice orientation control</subject><subject>Lithium cobalt oxide</subject><subject>Lithium-ion diffusivity</subject><subject>Radio-frequency magnetron sputtering</subject><subject>Thin film batteries</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkEFvGyEQhVHUSHHd_IWIS6Re1mUWvLC3VlbaVLLUS3tGeAAZCy8O4Lb598Gyk2tOIz3eezN8hNwBWwCD4ctusTukfyUd86Jn0DdxwUZxRWagJO96uVx-IDPGpeqkXPIb8rGUHWMMQLIZ2a5NrQEdTTm4qZoa0kQxTTWnSJOnMdRtOO6btDGx0vQ_WEfR1G1q04e4pz5lamLsSorBdqVVONoy0_l10-pdqy6fyLU3sbjby5yTP98ffq8eu_WvHz9X39YdCtXXTnHJ_CCs6IcBez54sE4NZnQw4gigENEopdDZjegZqtGbYTNabu3IFUPL5-TzufeQ09PRlar3oaCL0UwuHYsGIZQUwIE163C2Yk6lZOf1IYe9yc8amD6h1Tv9ilaf0J70hrYF7y87TEETfTYThvKW7iUAF3Jsvq9nn2sf_htc1gUb5XZ8yA6rtim8t-oFoJSVRA</recordid><startdate>20130315</startdate><enddate>20130315</enddate><creator>Yoon, Yongsub</creator><creator>Park, Chanhwi</creator><creator>Kim, Junghoon</creator><creator>Shin, Dongwook</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20130315</creationdate><title>Lattice orientation control of lithium cobalt oxide cathode film for all-solid-state thin film batteries</title><author>Yoon, Yongsub ; Park, Chanhwi ; Kim, Junghoon ; Shin, Dongwook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-8370f64d4266c236f1de86a9e19c9118ccca888cedb420c89fa6b9d3dd9380cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Exact sciences and technology</topic><topic>Lattice orientation control</topic><topic>Lithium cobalt oxide</topic><topic>Lithium-ion diffusivity</topic><topic>Radio-frequency magnetron sputtering</topic><topic>Thin film batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Yongsub</creatorcontrib><creatorcontrib>Park, Chanhwi</creatorcontrib><creatorcontrib>Kim, Junghoon</creatorcontrib><creatorcontrib>Shin, Dongwook</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Yongsub</au><au>Park, Chanhwi</au><au>Kim, Junghoon</au><au>Shin, Dongwook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice orientation control of lithium cobalt oxide cathode film for all-solid-state thin film batteries</atitle><jtitle>Journal of power sources</jtitle><date>2013-03-15</date><risdate>2013</risdate><volume>226</volume><spage>186</spage><epage>190</epage><pages>186-190</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>For the application to all-solid-state thin film batteries, LiCoO2 thin films are deposited by RF-sputtering with controlling the lattice orientations to maximize lithium-ion diffusivity in film textures. The nano-sized crystalline grains grow up with the (003) preferred orientation parallel to the substrates at room temperature due to the lowest surface energy of this atomic plane. However, because the surface energy difference of atomic planes of LiCoO2 reduces with increasing substrate temperature, the influence of surface energy becomes weaker at high temperature. The LiCoO2 thin films with the (110) preferred orientation are obtained at higher temperatures by dominant influence from the lowest the volume strain energy of this orientation. To take advance of this orientation effect in full cell, the influences of the metallic current collector layer on the structural properties of sputtered cathode are investigated. It turns out that the Li2O buffer layers between the cathode films and the metallic current collector layers can suppress the formation of lithium-deficient phase, Co3O4, and the growth of (003) plane by reducing the lattice match between of LiCoO2 plane and Al(111) plane. The LiCoO2 films with the controlled orientation show enhanced rate performance owing to improved interfacial resistance and lithium-ion conductivity. ► Lithium cobalt oxide thin film cathodes for the all-solid-state thin film batteries. ► The enhancement of ionic and electrical conductivities by controlling the lattice orientation. ► The improved rate performance of the cathode films with the controlled grain growth.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2012.10.094</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2013-03, Vol.226, p.186-190
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_1448741310
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Exact sciences and technology
Lattice orientation control
Lithium cobalt oxide
Lithium-ion diffusivity
Radio-frequency magnetron sputtering
Thin film batteries
title Lattice orientation control of lithium cobalt oxide cathode film for all-solid-state thin film batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A33%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20orientation%20control%20of%20lithium%20cobalt%20oxide%20cathode%20film%20for%20all-solid-state%20thin%20film%20batteries&rft.jtitle=Journal%20of%20power%20sources&rft.au=Yoon,%20Yongsub&rft.date=2013-03-15&rft.volume=226&rft.spage=186&rft.epage=190&rft.pages=186-190&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2012.10.094&rft_dat=%3Cproquest_cross%3E1448741310%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448741310&rft_id=info:pmid/&rft_els_id=S0378775312016606&rfr_iscdi=true