Stability Analysis of Nonlocal Elastic Columns with Initial Imperfection
Investigated herein is the postbuckling behavior of an initially imperfect nonlocal elastic column, which is simply supported at one end and subjected to an axial force at the other movable end. The governing nonlinear differential equation of the axially loaded nonlocal elastic column experiencing...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2013-01, Vol.2013 (2013), p.1-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 2013 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2013 |
creator | Xu, S. P. Wang, C. M. Xu, Meirong |
description | Investigated herein is the postbuckling behavior of an initially imperfect nonlocal elastic column, which is simply supported at one end and subjected to an axial force at the other movable end. The governing nonlinear differential equation of the axially loaded nonlocal elastic column experiencing large deflection is first established within the framework of Eringen's nonlocal elasticity theory in order to embrace the size effect. Its semianalytical solutions by the virtue of homotopy perturbation method, as well as the successive approximation algorithm, are determined in an explicit form, through which the postbuckling equilibrium loads in terms of the end rotation angle and the deformed configuration of the column at this end rotation are predicted. By comparing the degenerated results with the exact solutions available in the literature, the validity and accuracy of the proposed methods are numerically substantiated. The size effect, as well as the initial imperfection, on the buckled configuration and the postbuckling equilibrium path is also thoroughly discussed through parametric studies. |
doi_str_mv | 10.1155/2013/341232 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448730755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992722406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-89fb9ed9ef2cfdfe671843592b999c52934df3bcc98ce2777104d915f7f7e88e3</originalsourceid><addsrcrecordid>eNqN0c9LwzAUB_AiCs7pybsUvIhSl5cfTXIcY-pg6EEFbyVNE5aRNbNpGfvv7agH8aKn93jvwzu8b5JcAroHYGyCEZAJoYAJPkpGwHKSMaD8uO8Rplk__zhNzmJcI4SBgRglT6-tKp137T6d1srvo4tpsOlzqH3Qyqdzr2LrdDoLvtvUMd25dpUuate6frnYbE1jjW5dqM-TE6t8NBffdZy8P8zfZk_Z8uVxMZsuM00xbjMhbSlNJY3F2lbW5BwEJUziUkqpGZaEVpaUWkuhDeacA6KVBGa55UYIQ8bJzXB324TPzsS22LiojfeqNqGLBVAqOEGcsX9QLAXPGRzo9S-6Dl3TP6RXUmKOMUV5r-4GpZsQY2NssW3cRjX7AlBxCKA4BFAMAfT6dtArV1dq5_7AVwM2PTFW_cAEBFDyBWspjTw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992722406</pqid></control><display><type>article</type><title>Stability Analysis of Nonlocal Elastic Columns with Initial Imperfection</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Xu, S. P. ; Wang, C. M. ; Xu, Meirong</creator><contributor>Chou, Jyh Horng</contributor><creatorcontrib>Xu, S. P. ; Wang, C. M. ; Xu, Meirong ; Chou, Jyh Horng</creatorcontrib><description>Investigated herein is the postbuckling behavior of an initially imperfect nonlocal elastic column, which is simply supported at one end and subjected to an axial force at the other movable end. The governing nonlinear differential equation of the axially loaded nonlocal elastic column experiencing large deflection is first established within the framework of Eringen's nonlocal elasticity theory in order to embrace the size effect. Its semianalytical solutions by the virtue of homotopy perturbation method, as well as the successive approximation algorithm, are determined in an explicit form, through which the postbuckling equilibrium loads in terms of the end rotation angle and the deformed configuration of the column at this end rotation are predicted. By comparing the degenerated results with the exact solutions available in the literature, the validity and accuracy of the proposed methods are numerically substantiated. The size effect, as well as the initial imperfection, on the buckled configuration and the postbuckling equilibrium path is also thoroughly discussed through parametric studies.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2013/341232</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Applied mathematics ; Approximation ; Archives & records ; Carbon ; Columns (structural) ; Configurations ; Defects ; Deformation ; Differential equations ; Elasticity ; Engineering ; Exact solutions ; Mathematical analysis ; Mathematical models ; Mathematical problems ; Mechanics ; Nanotechnology ; Nonlinear differential equations ; Nonlocal elasticity ; Numerical methods ; Perturbation methods ; Postbuckling ; Size effects ; Stability analysis ; Studies</subject><ispartof>Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-12</ispartof><rights>Copyright © 2013 S. P. Xu et al.</rights><rights>Copyright © 2013 S. P. Xu et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-89fb9ed9ef2cfdfe671843592b999c52934df3bcc98ce2777104d915f7f7e88e3</citedby><cites>FETCH-LOGICAL-c422t-89fb9ed9ef2cfdfe671843592b999c52934df3bcc98ce2777104d915f7f7e88e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Chou, Jyh Horng</contributor><creatorcontrib>Xu, S. P.</creatorcontrib><creatorcontrib>Wang, C. M.</creatorcontrib><creatorcontrib>Xu, Meirong</creatorcontrib><title>Stability Analysis of Nonlocal Elastic Columns with Initial Imperfection</title><title>Mathematical problems in engineering</title><description>Investigated herein is the postbuckling behavior of an initially imperfect nonlocal elastic column, which is simply supported at one end and subjected to an axial force at the other movable end. The governing nonlinear differential equation of the axially loaded nonlocal elastic column experiencing large deflection is first established within the framework of Eringen's nonlocal elasticity theory in order to embrace the size effect. Its semianalytical solutions by the virtue of homotopy perturbation method, as well as the successive approximation algorithm, are determined in an explicit form, through which the postbuckling equilibrium loads in terms of the end rotation angle and the deformed configuration of the column at this end rotation are predicted. By comparing the degenerated results with the exact solutions available in the literature, the validity and accuracy of the proposed methods are numerically substantiated. The size effect, as well as the initial imperfection, on the buckled configuration and the postbuckling equilibrium path is also thoroughly discussed through parametric studies.</description><subject>Applied mathematics</subject><subject>Approximation</subject><subject>Archives & records</subject><subject>Carbon</subject><subject>Columns (structural)</subject><subject>Configurations</subject><subject>Defects</subject><subject>Deformation</subject><subject>Differential equations</subject><subject>Elasticity</subject><subject>Engineering</subject><subject>Exact solutions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Mechanics</subject><subject>Nanotechnology</subject><subject>Nonlinear differential equations</subject><subject>Nonlocal elasticity</subject><subject>Numerical methods</subject><subject>Perturbation methods</subject><subject>Postbuckling</subject><subject>Size effects</subject><subject>Stability analysis</subject><subject>Studies</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqN0c9LwzAUB_AiCs7pybsUvIhSl5cfTXIcY-pg6EEFbyVNE5aRNbNpGfvv7agH8aKn93jvwzu8b5JcAroHYGyCEZAJoYAJPkpGwHKSMaD8uO8Rplk__zhNzmJcI4SBgRglT6-tKp137T6d1srvo4tpsOlzqH3Qyqdzr2LrdDoLvtvUMd25dpUuate6frnYbE1jjW5dqM-TE6t8NBffdZy8P8zfZk_Z8uVxMZsuM00xbjMhbSlNJY3F2lbW5BwEJUziUkqpGZaEVpaUWkuhDeacA6KVBGa55UYIQ8bJzXB324TPzsS22LiojfeqNqGLBVAqOEGcsX9QLAXPGRzo9S-6Dl3TP6RXUmKOMUV5r-4GpZsQY2NssW3cRjX7AlBxCKA4BFAMAfT6dtArV1dq5_7AVwM2PTFW_cAEBFDyBWspjTw</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Xu, S. P.</creator><creator>Wang, C. M.</creator><creator>Xu, Meirong</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130101</creationdate><title>Stability Analysis of Nonlocal Elastic Columns with Initial Imperfection</title><author>Xu, S. P. ; Wang, C. M. ; Xu, Meirong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-89fb9ed9ef2cfdfe671843592b999c52934df3bcc98ce2777104d915f7f7e88e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied mathematics</topic><topic>Approximation</topic><topic>Archives & records</topic><topic>Carbon</topic><topic>Columns (structural)</topic><topic>Configurations</topic><topic>Defects</topic><topic>Deformation</topic><topic>Differential equations</topic><topic>Elasticity</topic><topic>Engineering</topic><topic>Exact solutions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Mechanics</topic><topic>Nanotechnology</topic><topic>Nonlinear differential equations</topic><topic>Nonlocal elasticity</topic><topic>Numerical methods</topic><topic>Perturbation methods</topic><topic>Postbuckling</topic><topic>Size effects</topic><topic>Stability analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, S. P.</creatorcontrib><creatorcontrib>Wang, C. M.</creatorcontrib><creatorcontrib>Xu, Meirong</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, S. P.</au><au>Wang, C. M.</au><au>Xu, Meirong</au><au>Chou, Jyh Horng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability Analysis of Nonlocal Elastic Columns with Initial Imperfection</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Investigated herein is the postbuckling behavior of an initially imperfect nonlocal elastic column, which is simply supported at one end and subjected to an axial force at the other movable end. The governing nonlinear differential equation of the axially loaded nonlocal elastic column experiencing large deflection is first established within the framework of Eringen's nonlocal elasticity theory in order to embrace the size effect. Its semianalytical solutions by the virtue of homotopy perturbation method, as well as the successive approximation algorithm, are determined in an explicit form, through which the postbuckling equilibrium loads in terms of the end rotation angle and the deformed configuration of the column at this end rotation are predicted. By comparing the degenerated results with the exact solutions available in the literature, the validity and accuracy of the proposed methods are numerically substantiated. The size effect, as well as the initial imperfection, on the buckled configuration and the postbuckling equilibrium path is also thoroughly discussed through parametric studies.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2013/341232</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-12 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_miscellaneous_1448730755 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Applied mathematics Approximation Archives & records Carbon Columns (structural) Configurations Defects Deformation Differential equations Elasticity Engineering Exact solutions Mathematical analysis Mathematical models Mathematical problems Mechanics Nanotechnology Nonlinear differential equations Nonlocal elasticity Numerical methods Perturbation methods Postbuckling Size effects Stability analysis Studies |
title | Stability Analysis of Nonlocal Elastic Columns with Initial Imperfection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A46%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20Analysis%20of%20Nonlocal%20Elastic%20Columns%20with%20Initial%20Imperfection&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Xu,%20S.%20P.&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2013/341232&rft_dat=%3Cproquest_cross%3E1992722406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992722406&rft_id=info:pmid/&rfr_iscdi=true |