Numerical study of shock wave dynamics in a gas suspension
We describe a process of pressure discontinuity breakdown in a gas suspension, dynamics of which is simulated by a system of equations of motion for a two-temperature two-speed monodisperse medium without phase transition and coagulation. The carrying medium is described by the Navier-Stokes equatio...
Gespeichert in:
Veröffentlicht in: | Russian aeronautics 2013-04, Vol.56 (2), p.154-159 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 159 |
---|---|
container_issue | 2 |
container_start_page | 154 |
container_title | Russian aeronautics |
container_volume | 56 |
creator | Gubaidullin, D. A. Tukmakov, D. A. |
description | We describe a process of pressure discontinuity breakdown in a gas suspension, dynamics of which is simulated by a system of equations of motion for a two-temperature two-speed monodisperse medium without phase transition and coagulation. The carrying medium is described by the Navier-Stokes equation system. A disperse phase is simulated by equations of mass, momentum and internal energy conservation. The system is reduced to a dimensionless form, it is written in the generalized coordinates and is solved by the explicit MacCormack method with a conservative correction scheme applied to each phase to obtain a monotonous solution. We describe an effect of decreasing the time intensity of a shock wave when its attitude is retained. The time of the pressure differential value relaxation at the direct shock wave front depends on the volumetric content and dispersion degree of the gas suspension. |
doi_str_mv | 10.3103/S1068799813020074 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448718934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3058310741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2164-2b478e91ca8646388c3d83c5a5f976ca1226c455d2666b9ab2f99c2b9b4d83c93</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqXwA7hZ4sIl4Ff84IYqXlIFB-AcOY5TUhK7eAmo_x5X5YBAnHal-Wa0OwgdU3LGKeHnj5RIrYzRlBNGiBI7aEINF4UyhO7mPcvFRt9HBwBLQkrJBJugi_tx8KlztsfwPjZrHFsML9G94k_74XGzDnboHOAuYIsXFjCMsPIBuhgO0V5re_BH33OKnq-vnma3xfzh5m52OS8co1IUrBZKe0Od1VJIrrXjjeautGVrlHSWMiadKMuGSSlrY2vWGuNYbWqx4QyfotNt7irFt9HDezV04Hzf2-DjCBUVQiuq87MZPfmFLuOYQr4uU0yrkitOMkW3lEsRIPm2WqVusGldUVJt2qz-tJk9bOuBzIaFTz-S_zV9ASZ-dBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1428753730</pqid></control><display><type>article</type><title>Numerical study of shock wave dynamics in a gas suspension</title><source>SpringerLink Journals</source><creator>Gubaidullin, D. A. ; Tukmakov, D. A.</creator><creatorcontrib>Gubaidullin, D. A. ; Tukmakov, D. A.</creatorcontrib><description>We describe a process of pressure discontinuity breakdown in a gas suspension, dynamics of which is simulated by a system of equations of motion for a two-temperature two-speed monodisperse medium without phase transition and coagulation. The carrying medium is described by the Navier-Stokes equation system. A disperse phase is simulated by equations of mass, momentum and internal energy conservation. The system is reduced to a dimensionless form, it is written in the generalized coordinates and is solved by the explicit MacCormack method with a conservative correction scheme applied to each phase to obtain a monotonous solution. We describe an effect of decreasing the time intensity of a shock wave when its attitude is retained. The time of the pressure differential value relaxation at the direct shock wave front depends on the volumetric content and dispersion degree of the gas suspension.</description><identifier>ISSN: 1068-7998</identifier><identifier>EISSN: 1934-7901</identifier><identifier>DOI: 10.3103/S1068799813020074</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aero- and Gas-Dynamics of Flight Vehicles and Their Engines ; Automotive Engineering ; Conservation ; Dispersions ; Dynamical systems ; Dynamics ; Engineering ; Mathematical analysis ; Mathematical models ; Navier-Stokes equations ; Shock waves</subject><ispartof>Russian aeronautics, 2013-04, Vol.56 (2), p.154-159</ispartof><rights>Allerton Press, Inc. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2164-2b478e91ca8646388c3d83c5a5f976ca1226c455d2666b9ab2f99c2b9b4d83c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1068799813020074$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1068799813020074$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gubaidullin, D. A.</creatorcontrib><creatorcontrib>Tukmakov, D. A.</creatorcontrib><title>Numerical study of shock wave dynamics in a gas suspension</title><title>Russian aeronautics</title><addtitle>Russ. Aeronaut</addtitle><description>We describe a process of pressure discontinuity breakdown in a gas suspension, dynamics of which is simulated by a system of equations of motion for a two-temperature two-speed monodisperse medium without phase transition and coagulation. The carrying medium is described by the Navier-Stokes equation system. A disperse phase is simulated by equations of mass, momentum and internal energy conservation. The system is reduced to a dimensionless form, it is written in the generalized coordinates and is solved by the explicit MacCormack method with a conservative correction scheme applied to each phase to obtain a monotonous solution. We describe an effect of decreasing the time intensity of a shock wave when its attitude is retained. The time of the pressure differential value relaxation at the direct shock wave front depends on the volumetric content and dispersion degree of the gas suspension.</description><subject>Aero- and Gas-Dynamics of Flight Vehicles and Their Engines</subject><subject>Automotive Engineering</subject><subject>Conservation</subject><subject>Dispersions</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Shock waves</subject><issn>1068-7998</issn><issn>1934-7901</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqXwA7hZ4sIl4Ff84IYqXlIFB-AcOY5TUhK7eAmo_x5X5YBAnHal-Wa0OwgdU3LGKeHnj5RIrYzRlBNGiBI7aEINF4UyhO7mPcvFRt9HBwBLQkrJBJugi_tx8KlztsfwPjZrHFsML9G94k_74XGzDnboHOAuYIsXFjCMsPIBuhgO0V5re_BH33OKnq-vnma3xfzh5m52OS8co1IUrBZKe0Od1VJIrrXjjeautGVrlHSWMiadKMuGSSlrY2vWGuNYbWqx4QyfotNt7irFt9HDezV04Hzf2-DjCBUVQiuq87MZPfmFLuOYQr4uU0yrkitOMkW3lEsRIPm2WqVusGldUVJt2qz-tJk9bOuBzIaFTz-S_zV9ASZ-dBk</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Gubaidullin, D. A.</creator><creator>Tukmakov, D. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201304</creationdate><title>Numerical study of shock wave dynamics in a gas suspension</title><author>Gubaidullin, D. A. ; Tukmakov, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2164-2b478e91ca8646388c3d83c5a5f976ca1226c455d2666b9ab2f99c2b9b4d83c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aero- and Gas-Dynamics of Flight Vehicles and Their Engines</topic><topic>Automotive Engineering</topic><topic>Conservation</topic><topic>Dispersions</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Shock waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gubaidullin, D. A.</creatorcontrib><creatorcontrib>Tukmakov, D. A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Russian aeronautics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gubaidullin, D. A.</au><au>Tukmakov, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study of shock wave dynamics in a gas suspension</atitle><jtitle>Russian aeronautics</jtitle><stitle>Russ. Aeronaut</stitle><date>2013-04</date><risdate>2013</risdate><volume>56</volume><issue>2</issue><spage>154</spage><epage>159</epage><pages>154-159</pages><issn>1068-7998</issn><eissn>1934-7901</eissn><abstract>We describe a process of pressure discontinuity breakdown in a gas suspension, dynamics of which is simulated by a system of equations of motion for a two-temperature two-speed monodisperse medium without phase transition and coagulation. The carrying medium is described by the Navier-Stokes equation system. A disperse phase is simulated by equations of mass, momentum and internal energy conservation. The system is reduced to a dimensionless form, it is written in the generalized coordinates and is solved by the explicit MacCormack method with a conservative correction scheme applied to each phase to obtain a monotonous solution. We describe an effect of decreasing the time intensity of a shock wave when its attitude is retained. The time of the pressure differential value relaxation at the direct shock wave front depends on the volumetric content and dispersion degree of the gas suspension.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.3103/S1068799813020074</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1068-7998 |
ispartof | Russian aeronautics, 2013-04, Vol.56 (2), p.154-159 |
issn | 1068-7998 1934-7901 |
language | eng |
recordid | cdi_proquest_miscellaneous_1448718934 |
source | SpringerLink Journals |
subjects | Aero- and Gas-Dynamics of Flight Vehicles and Their Engines Automotive Engineering Conservation Dispersions Dynamical systems Dynamics Engineering Mathematical analysis Mathematical models Navier-Stokes equations Shock waves |
title | Numerical study of shock wave dynamics in a gas suspension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20of%20shock%20wave%20dynamics%20in%20a%20gas%20suspension&rft.jtitle=Russian%20aeronautics&rft.au=Gubaidullin,%20D.%20A.&rft.date=2013-04&rft.volume=56&rft.issue=2&rft.spage=154&rft.epage=159&rft.pages=154-159&rft.issn=1068-7998&rft.eissn=1934-7901&rft_id=info:doi/10.3103/S1068799813020074&rft_dat=%3Cproquest_cross%3E3058310741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1428753730&rft_id=info:pmid/&rfr_iscdi=true |