Numerical study of shock wave dynamics in a gas suspension

We describe a process of pressure discontinuity breakdown in a gas suspension, dynamics of which is simulated by a system of equations of motion for a two-temperature two-speed monodisperse medium without phase transition and coagulation. The carrying medium is described by the Navier-Stokes equatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian aeronautics 2013-04, Vol.56 (2), p.154-159
Hauptverfasser: Gubaidullin, D. A., Tukmakov, D. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 2
container_start_page 154
container_title Russian aeronautics
container_volume 56
creator Gubaidullin, D. A.
Tukmakov, D. A.
description We describe a process of pressure discontinuity breakdown in a gas suspension, dynamics of which is simulated by a system of equations of motion for a two-temperature two-speed monodisperse medium without phase transition and coagulation. The carrying medium is described by the Navier-Stokes equation system. A disperse phase is simulated by equations of mass, momentum and internal energy conservation. The system is reduced to a dimensionless form, it is written in the generalized coordinates and is solved by the explicit MacCormack method with a conservative correction scheme applied to each phase to obtain a monotonous solution. We describe an effect of decreasing the time intensity of a shock wave when its attitude is retained. The time of the pressure differential value relaxation at the direct shock wave front depends on the volumetric content and dispersion degree of the gas suspension.
doi_str_mv 10.3103/S1068799813020074
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448718934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3058310741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2164-2b478e91ca8646388c3d83c5a5f976ca1226c455d2666b9ab2f99c2b9b4d83c93</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqXwA7hZ4sIl4Ff84IYqXlIFB-AcOY5TUhK7eAmo_x5X5YBAnHal-Wa0OwgdU3LGKeHnj5RIrYzRlBNGiBI7aEINF4UyhO7mPcvFRt9HBwBLQkrJBJugi_tx8KlztsfwPjZrHFsML9G94k_74XGzDnboHOAuYIsXFjCMsPIBuhgO0V5re_BH33OKnq-vnma3xfzh5m52OS8co1IUrBZKe0Od1VJIrrXjjeautGVrlHSWMiadKMuGSSlrY2vWGuNYbWqx4QyfotNt7irFt9HDezV04Hzf2-DjCBUVQiuq87MZPfmFLuOYQr4uU0yrkitOMkW3lEsRIPm2WqVusGldUVJt2qz-tJk9bOuBzIaFTz-S_zV9ASZ-dBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1428753730</pqid></control><display><type>article</type><title>Numerical study of shock wave dynamics in a gas suspension</title><source>SpringerLink Journals</source><creator>Gubaidullin, D. A. ; Tukmakov, D. A.</creator><creatorcontrib>Gubaidullin, D. A. ; Tukmakov, D. A.</creatorcontrib><description>We describe a process of pressure discontinuity breakdown in a gas suspension, dynamics of which is simulated by a system of equations of motion for a two-temperature two-speed monodisperse medium without phase transition and coagulation. The carrying medium is described by the Navier-Stokes equation system. A disperse phase is simulated by equations of mass, momentum and internal energy conservation. The system is reduced to a dimensionless form, it is written in the generalized coordinates and is solved by the explicit MacCormack method with a conservative correction scheme applied to each phase to obtain a monotonous solution. We describe an effect of decreasing the time intensity of a shock wave when its attitude is retained. The time of the pressure differential value relaxation at the direct shock wave front depends on the volumetric content and dispersion degree of the gas suspension.</description><identifier>ISSN: 1068-7998</identifier><identifier>EISSN: 1934-7901</identifier><identifier>DOI: 10.3103/S1068799813020074</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Aero- and Gas-Dynamics of Flight Vehicles and Their Engines ; Automotive Engineering ; Conservation ; Dispersions ; Dynamical systems ; Dynamics ; Engineering ; Mathematical analysis ; Mathematical models ; Navier-Stokes equations ; Shock waves</subject><ispartof>Russian aeronautics, 2013-04, Vol.56 (2), p.154-159</ispartof><rights>Allerton Press, Inc. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2164-2b478e91ca8646388c3d83c5a5f976ca1226c455d2666b9ab2f99c2b9b4d83c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1068799813020074$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1068799813020074$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gubaidullin, D. A.</creatorcontrib><creatorcontrib>Tukmakov, D. A.</creatorcontrib><title>Numerical study of shock wave dynamics in a gas suspension</title><title>Russian aeronautics</title><addtitle>Russ. Aeronaut</addtitle><description>We describe a process of pressure discontinuity breakdown in a gas suspension, dynamics of which is simulated by a system of equations of motion for a two-temperature two-speed monodisperse medium without phase transition and coagulation. The carrying medium is described by the Navier-Stokes equation system. A disperse phase is simulated by equations of mass, momentum and internal energy conservation. The system is reduced to a dimensionless form, it is written in the generalized coordinates and is solved by the explicit MacCormack method with a conservative correction scheme applied to each phase to obtain a monotonous solution. We describe an effect of decreasing the time intensity of a shock wave when its attitude is retained. The time of the pressure differential value relaxation at the direct shock wave front depends on the volumetric content and dispersion degree of the gas suspension.</description><subject>Aero- and Gas-Dynamics of Flight Vehicles and Their Engines</subject><subject>Automotive Engineering</subject><subject>Conservation</subject><subject>Dispersions</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Engineering</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Shock waves</subject><issn>1068-7998</issn><issn>1934-7901</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqXwA7hZ4sIl4Ff84IYqXlIFB-AcOY5TUhK7eAmo_x5X5YBAnHal-Wa0OwgdU3LGKeHnj5RIrYzRlBNGiBI7aEINF4UyhO7mPcvFRt9HBwBLQkrJBJugi_tx8KlztsfwPjZrHFsML9G94k_74XGzDnboHOAuYIsXFjCMsPIBuhgO0V5re_BH33OKnq-vnma3xfzh5m52OS8co1IUrBZKe0Od1VJIrrXjjeautGVrlHSWMiadKMuGSSlrY2vWGuNYbWqx4QyfotNt7irFt9HDezV04Hzf2-DjCBUVQiuq87MZPfmFLuOYQr4uU0yrkitOMkW3lEsRIPm2WqVusGldUVJt2qz-tJk9bOuBzIaFTz-S_zV9ASZ-dBk</recordid><startdate>201304</startdate><enddate>201304</enddate><creator>Gubaidullin, D. A.</creator><creator>Tukmakov, D. A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201304</creationdate><title>Numerical study of shock wave dynamics in a gas suspension</title><author>Gubaidullin, D. A. ; Tukmakov, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2164-2b478e91ca8646388c3d83c5a5f976ca1226c455d2666b9ab2f99c2b9b4d83c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aero- and Gas-Dynamics of Flight Vehicles and Their Engines</topic><topic>Automotive Engineering</topic><topic>Conservation</topic><topic>Dispersions</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Engineering</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Shock waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gubaidullin, D. A.</creatorcontrib><creatorcontrib>Tukmakov, D. A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Russian aeronautics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gubaidullin, D. A.</au><au>Tukmakov, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study of shock wave dynamics in a gas suspension</atitle><jtitle>Russian aeronautics</jtitle><stitle>Russ. Aeronaut</stitle><date>2013-04</date><risdate>2013</risdate><volume>56</volume><issue>2</issue><spage>154</spage><epage>159</epage><pages>154-159</pages><issn>1068-7998</issn><eissn>1934-7901</eissn><abstract>We describe a process of pressure discontinuity breakdown in a gas suspension, dynamics of which is simulated by a system of equations of motion for a two-temperature two-speed monodisperse medium without phase transition and coagulation. The carrying medium is described by the Navier-Stokes equation system. A disperse phase is simulated by equations of mass, momentum and internal energy conservation. The system is reduced to a dimensionless form, it is written in the generalized coordinates and is solved by the explicit MacCormack method with a conservative correction scheme applied to each phase to obtain a monotonous solution. We describe an effect of decreasing the time intensity of a shock wave when its attitude is retained. The time of the pressure differential value relaxation at the direct shock wave front depends on the volumetric content and dispersion degree of the gas suspension.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.3103/S1068799813020074</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-7998
ispartof Russian aeronautics, 2013-04, Vol.56 (2), p.154-159
issn 1068-7998
1934-7901
language eng
recordid cdi_proquest_miscellaneous_1448718934
source SpringerLink Journals
subjects Aero- and Gas-Dynamics of Flight Vehicles and Their Engines
Automotive Engineering
Conservation
Dispersions
Dynamical systems
Dynamics
Engineering
Mathematical analysis
Mathematical models
Navier-Stokes equations
Shock waves
title Numerical study of shock wave dynamics in a gas suspension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20of%20shock%20wave%20dynamics%20in%20a%20gas%20suspension&rft.jtitle=Russian%20aeronautics&rft.au=Gubaidullin,%20D.%20A.&rft.date=2013-04&rft.volume=56&rft.issue=2&rft.spage=154&rft.epage=159&rft.pages=154-159&rft.issn=1068-7998&rft.eissn=1934-7901&rft_id=info:doi/10.3103/S1068799813020074&rft_dat=%3Cproquest_cross%3E3058310741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1428753730&rft_id=info:pmid/&rfr_iscdi=true