Application of independent component analysis for speech–music separation using an efficient score function estimation
In this paper speech-music separation using Blind Source Separation is discussed. The separating algorithm is based on the mutual information minimization where the natural gradient algorithm is used for minimization. In order to do that, score function estimation from observation signals (combinati...
Gespeichert in:
Veröffentlicht in: | Journal of Electrical Engineering 2012-12, Vol.63 (6), p.380-385 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 385 |
---|---|
container_issue | 6 |
container_start_page | 380 |
container_title | Journal of Electrical Engineering |
container_volume | 63 |
creator | Pishravian, Arash Aghabozorgi Sahaf, Masoud Reza |
description | In this paper speech-music separation using Blind Source Separation is discussed. The separating algorithm is based on the mutual information minimization where the natural gradient algorithm is used for minimization. In order to do that, score function estimation from observation signals (combination of speech and music) samples is needed. The accuracy and the speed of the mentioned estimation will affect on the quality of the separated signals and the processing time of the algorithm. The score function estimation in the presented algorithm is based on Gaussian mixture based kernel density estimation method. The experimental results of the presented algorithm on the speech-music separation and comparing to the separating algorithm which is based on the Minimum Mean Square Error estimator, indicate that it can cause better performance and less processing time |
doi_str_mv | 10.2478/v10187-012-0056-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448712942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1448712942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-5716f4eff5e1f41cd88b2f83ab4d5287302232d5022371b0e4a77d320711c9423</originalsourceid><addsrcrecordid>eNpdkc1O3DAUhaOqSEXAA7CL1E03bu-1ndhZItTSapCqESDNzvI4Nphm4tROEOx4h74hT4IzqViwuT_Sd-7V0SmKU4SvlAv57QEBpSCAlABUNYEPxSEy1hAGzebjfq4Iqxn9VJykdA8AyBvKoT4sHs-GofNGjz70ZXCl71s72Fz6sTRhN4R-nnSvu6fkU-lCLNNgrbl7ef63m5I3ZbKDjos-7_1thkvrnDd-ViYToi3d1Js9YdPod3v4uDhwukv25H8_Km5-fL8-_0kuf1_8Oj-7JCYbGEklsHY836ssOo6mlXJLnWR6y9uKSsGAUkbbam4Ct2C5FqJlFASiaThlR8WX5e4Qw98p_1c7n4ztOt3bMCWFnEuBdEE_v0PvwxSz9UwxKhuODZeZwoUyMaQUrVNDzJ7ik0JQcxxqiUPlONQch4KsIYvGp9E-vgl0_KNqwUSl1tdcbS7qK1ivVmrNXgExVI6N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1328941948</pqid></control><display><type>article</type><title>Application of independent component analysis for speech–music separation using an efficient score function estimation</title><source>Walter De Gruyter: Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Pishravian, Arash ; Aghabozorgi Sahaf, Masoud Reza</creator><creatorcontrib>Pishravian, Arash ; Aghabozorgi Sahaf, Masoud Reza</creatorcontrib><description>In this paper speech-music separation using Blind Source Separation is discussed. The separating algorithm is based on the mutual information minimization where the natural gradient algorithm is used for minimization. In order to do that, score function estimation from observation signals (combination of speech and music) samples is needed. The accuracy and the speed of the mentioned estimation will affect on the quality of the separated signals and the processing time of the algorithm. The score function estimation in the presented algorithm is based on Gaussian mixture based kernel density estimation method. The experimental results of the presented algorithm on the speech-music separation and comparing to the separating algorithm which is based on the Minimum Mean Square Error estimator, indicate that it can cause better performance and less processing time</description><identifier>ISSN: 1335-3632</identifier><identifier>EISSN: 1339-309X</identifier><identifier>DOI: 10.2478/v10187-012-0056-0</identifier><language>eng</language><publisher>Bratislava: Versita</publisher><subject>Algorithms ; Blinds ; Density ; Estimators ; Gaussian ; independent component analysis ; Minimization ; mutual information ; Optimization ; score function estimation ; Separation ; speech-music separation</subject><ispartof>Journal of Electrical Engineering, 2012-12, Vol.63 (6), p.380-385</ispartof><rights>Copyright Versita Dec 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pishravian, Arash</creatorcontrib><creatorcontrib>Aghabozorgi Sahaf, Masoud Reza</creatorcontrib><title>Application of independent component analysis for speech–music separation using an efficient score function estimation</title><title>Journal of Electrical Engineering</title><description>In this paper speech-music separation using Blind Source Separation is discussed. The separating algorithm is based on the mutual information minimization where the natural gradient algorithm is used for minimization. In order to do that, score function estimation from observation signals (combination of speech and music) samples is needed. The accuracy and the speed of the mentioned estimation will affect on the quality of the separated signals and the processing time of the algorithm. The score function estimation in the presented algorithm is based on Gaussian mixture based kernel density estimation method. The experimental results of the presented algorithm on the speech-music separation and comparing to the separating algorithm which is based on the Minimum Mean Square Error estimator, indicate that it can cause better performance and less processing time</description><subject>Algorithms</subject><subject>Blinds</subject><subject>Density</subject><subject>Estimators</subject><subject>Gaussian</subject><subject>independent component analysis</subject><subject>Minimization</subject><subject>mutual information</subject><subject>Optimization</subject><subject>score function estimation</subject><subject>Separation</subject><subject>speech-music separation</subject><issn>1335-3632</issn><issn>1339-309X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc1O3DAUhaOqSEXAA7CL1E03bu-1ndhZItTSapCqESDNzvI4Nphm4tROEOx4h74hT4IzqViwuT_Sd-7V0SmKU4SvlAv57QEBpSCAlABUNYEPxSEy1hAGzebjfq4Iqxn9VJykdA8AyBvKoT4sHs-GofNGjz70ZXCl71s72Fz6sTRhN4R-nnSvu6fkU-lCLNNgrbl7ef63m5I3ZbKDjos-7_1thkvrnDd-ViYToi3d1Js9YdPod3v4uDhwukv25H8_Km5-fL8-_0kuf1_8Oj-7JCYbGEklsHY836ssOo6mlXJLnWR6y9uKSsGAUkbbam4Ct2C5FqJlFASiaThlR8WX5e4Qw98p_1c7n4ztOt3bMCWFnEuBdEE_v0PvwxSz9UwxKhuODZeZwoUyMaQUrVNDzJ7ik0JQcxxqiUPlONQch4KsIYvGp9E-vgl0_KNqwUSl1tdcbS7qK1ivVmrNXgExVI6N</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Pishravian, Arash</creator><creator>Aghabozorgi Sahaf, Masoud Reza</creator><general>Versita</general><general>De Gruyter Poland</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20121201</creationdate><title>Application of independent component analysis for speech–music separation using an efficient score function estimation</title><author>Pishravian, Arash ; Aghabozorgi Sahaf, Masoud Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-5716f4eff5e1f41cd88b2f83ab4d5287302232d5022371b0e4a77d320711c9423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Blinds</topic><topic>Density</topic><topic>Estimators</topic><topic>Gaussian</topic><topic>independent component analysis</topic><topic>Minimization</topic><topic>mutual information</topic><topic>Optimization</topic><topic>score function estimation</topic><topic>Separation</topic><topic>speech-music separation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pishravian, Arash</creatorcontrib><creatorcontrib>Aghabozorgi Sahaf, Masoud Reza</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of Electrical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pishravian, Arash</au><au>Aghabozorgi Sahaf, Masoud Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of independent component analysis for speech–music separation using an efficient score function estimation</atitle><jtitle>Journal of Electrical Engineering</jtitle><date>2012-12-01</date><risdate>2012</risdate><volume>63</volume><issue>6</issue><spage>380</spage><epage>385</epage><pages>380-385</pages><issn>1335-3632</issn><eissn>1339-309X</eissn><abstract>In this paper speech-music separation using Blind Source Separation is discussed. The separating algorithm is based on the mutual information minimization where the natural gradient algorithm is used for minimization. In order to do that, score function estimation from observation signals (combination of speech and music) samples is needed. The accuracy and the speed of the mentioned estimation will affect on the quality of the separated signals and the processing time of the algorithm. The score function estimation in the presented algorithm is based on Gaussian mixture based kernel density estimation method. The experimental results of the presented algorithm on the speech-music separation and comparing to the separating algorithm which is based on the Minimum Mean Square Error estimator, indicate that it can cause better performance and less processing time</abstract><cop>Bratislava</cop><pub>Versita</pub><doi>10.2478/v10187-012-0056-0</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1335-3632 |
ispartof | Journal of Electrical Engineering, 2012-12, Vol.63 (6), p.380-385 |
issn | 1335-3632 1339-309X |
language | eng |
recordid | cdi_proquest_miscellaneous_1448712942 |
source | Walter De Gruyter: Open Access Journals; EZB Electronic Journals Library |
subjects | Algorithms Blinds Density Estimators Gaussian independent component analysis Minimization mutual information Optimization score function estimation Separation speech-music separation |
title | Application of independent component analysis for speech–music separation using an efficient score function estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A33%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20independent%20component%20analysis%20for%20speech%E2%80%93music%20separation%20using%20an%20efficient%20score%20function%20estimation&rft.jtitle=Journal%20of%20Electrical%20Engineering&rft.au=Pishravian,%20Arash&rft.date=2012-12-01&rft.volume=63&rft.issue=6&rft.spage=380&rft.epage=385&rft.pages=380-385&rft.issn=1335-3632&rft.eissn=1339-309X&rft_id=info:doi/10.2478/v10187-012-0056-0&rft_dat=%3Cproquest_cross%3E1448712942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1328941948&rft_id=info:pmid/&rfr_iscdi=true |