Carbon dynamics in the future forest: the importance of long-term successional legacy and climate-fire interactions

Understanding how climate change may influence forest carbon (C) budgets requires knowledge of forest growth relationships with regional climate, long‐term forest succession, and past and future disturbances, such as wildfires and timber harvesting events. We used a landscape‐scale model of forest s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2013-11, Vol.19 (11), p.3502-3515
Hauptverfasser: Loudermilk, E. Louise, Scheller, Robert M., Weisberg, Peter J., Yang, Jian, Dilts, Thomas E., Karam, Sarah L., Skinner, Carl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3515
container_issue 11
container_start_page 3502
container_title Global change biology
container_volume 19
creator Loudermilk, E. Louise
Scheller, Robert M.
Weisberg, Peter J.
Yang, Jian
Dilts, Thomas E.
Karam, Sarah L.
Skinner, Carl
description Understanding how climate change may influence forest carbon (C) budgets requires knowledge of forest growth relationships with regional climate, long‐term forest succession, and past and future disturbances, such as wildfires and timber harvesting events. We used a landscape‐scale model of forest succession, wildfire, and C dynamics (LANDIS‐II) to evaluate the effects of a changing climate (A2 and B1 IPCC emissions; Geophysical Fluid Dynamics Laboratory General Circulation Models) on total forest C, tree species composition, and wildfire dynamics in the Lake Tahoe Basin, California, and Nevada. The independent effects of temperature and precipitation were assessed within and among climate models. Results highlight the importance of modeling forest succession and stand development processes at the landscape scale for understanding the C cycle. Due primarily to landscape legacy effects of historic logging of the Comstock Era in the late 1880s, C sequestration may continue throughout the current century, and the forest will remain a C sink (Net Ecosystem Carbon Balance > 0), regardless of climate regime. Climate change caused increases in temperatures limited simulated C sequestration potential because of augmented fire activity and reduced establishment ability of subalpine and upper montane trees. Higher temperatures influenced forest response more than reduced precipitation. As the forest reached its potential steady state, the forest could become C neutral or a C source, and climate change could accelerate this transition. The future of forest ecosystem C cycling in many forested systems worldwide may depend more on major disturbances and landscape legacies related to land use than on projected climate change alone.
doi_str_mv 10.1111/gcb.12310
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448225520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1443398355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5220-ebee687561cd2fa78d1a30301d475297a2d44763233bbfbdfb49b290613b527d3</originalsourceid><addsrcrecordid>eNqN0V1v1SAYB_DGuLg5vfALGBJjohfdgKdAuztt9GxmmTfz5Y4AhSOzLUdoo-fby3nZlpiYjBsI-fE8wL8oXhB8QvI4XRp9QigQ_Kg4IsBZSauaP96sWVUSTOCweJrSDcYYKOZPikMKNSWs5kdFalXUYUTdelSDNwn5EU0_LHLzNMc8hWjTdLbd8sMqxEmNxqLgUB_GZTnZOKA0G2NT8mFUPertUpk1UmOHTO8HNdnS-VzIj9kqM2WVnhUHTvXJPt_Px8WXjx-u2_Py8vPion13WRpGKS6ttpbXgnFiOuqUqDuiAAMmXSUYbYSiXVUJDhRAa6c7p6tG0wZzAppR0cFx8WZXdxXDrzm_Qw4-Gdv3arRhTpJUVU0pYxQ_jBKKH0YBmhoYy_TVP_QmzDF_01YRzkHUTVZvd8rEkFK0Tq5i_rm4lgTLTb4y5yu3-Wb7cl9x1oPt7uRtoBm83gOVjOpdzHn5dO9EgwnDm6ud7txv39v1_zvKRfv-tnW5O-HTZP_cnVDxp-QCBJPfrhbyur2C71_xJ0ngL4c7yVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441663789</pqid></control><display><type>article</type><title>Carbon dynamics in the future forest: the importance of long-term successional legacy and climate-fire interactions</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Loudermilk, E. Louise ; Scheller, Robert M. ; Weisberg, Peter J. ; Yang, Jian ; Dilts, Thomas E. ; Karam, Sarah L. ; Skinner, Carl</creator><creatorcontrib>Loudermilk, E. Louise ; Scheller, Robert M. ; Weisberg, Peter J. ; Yang, Jian ; Dilts, Thomas E. ; Karam, Sarah L. ; Skinner, Carl</creatorcontrib><description>Understanding how climate change may influence forest carbon (C) budgets requires knowledge of forest growth relationships with regional climate, long‐term forest succession, and past and future disturbances, such as wildfires and timber harvesting events. We used a landscape‐scale model of forest succession, wildfire, and C dynamics (LANDIS‐II) to evaluate the effects of a changing climate (A2 and B1 IPCC emissions; Geophysical Fluid Dynamics Laboratory General Circulation Models) on total forest C, tree species composition, and wildfire dynamics in the Lake Tahoe Basin, California, and Nevada. The independent effects of temperature and precipitation were assessed within and among climate models. Results highlight the importance of modeling forest succession and stand development processes at the landscape scale for understanding the C cycle. Due primarily to landscape legacy effects of historic logging of the Comstock Era in the late 1880s, C sequestration may continue throughout the current century, and the forest will remain a C sink (Net Ecosystem Carbon Balance &gt; 0), regardless of climate regime. Climate change caused increases in temperatures limited simulated C sequestration potential because of augmented fire activity and reduced establishment ability of subalpine and upper montane trees. Higher temperatures influenced forest response more than reduced precipitation. As the forest reached its potential steady state, the forest could become C neutral or a C source, and climate change could accelerate this transition. The future of forest ecosystem C cycling in many forested systems worldwide may depend more on major disturbances and landscape legacies related to land use than on projected climate change alone.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.12310</identifier><identifier>PMID: 23821586</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Basins ; Biological and medical sciences ; California ; carbon ; Carbon Cycle ; Carbon sequestration ; Climate Change ; Climatology. Bioclimatology. Climate change ; Coniferophyta - growth &amp; development ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; fire ; Fires ; Forest &amp; brush fires ; Forestry ; Fundamental and applied biological sciences. Psychology ; General aspects ; General forest ecology ; Generalities. Production, biomass. Quality of wood and forest products. General forest ecology ; Greenhouse gases ; LANDIS-II ; landscape legacy ; Meteorology ; Models, Theoretical ; net ecosystem carbon balance ; Nevada ; soil ; Synecology ; Trees - growth &amp; development</subject><ispartof>Global change biology, 2013-11, Vol.19 (11), p.3502-3515</ispartof><rights>Published 2013. This article is a U.S. Government work and is in the public domain in the USA.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5220-ebee687561cd2fa78d1a30301d475297a2d44763233bbfbdfb49b290613b527d3</citedby><cites>FETCH-LOGICAL-c5220-ebee687561cd2fa78d1a30301d475297a2d44763233bbfbdfb49b290613b527d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.12310$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.12310$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27901505$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23821586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loudermilk, E. Louise</creatorcontrib><creatorcontrib>Scheller, Robert M.</creatorcontrib><creatorcontrib>Weisberg, Peter J.</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Dilts, Thomas E.</creatorcontrib><creatorcontrib>Karam, Sarah L.</creatorcontrib><creatorcontrib>Skinner, Carl</creatorcontrib><title>Carbon dynamics in the future forest: the importance of long-term successional legacy and climate-fire interactions</title><title>Global change biology</title><addtitle>Glob Change Biol</addtitle><description>Understanding how climate change may influence forest carbon (C) budgets requires knowledge of forest growth relationships with regional climate, long‐term forest succession, and past and future disturbances, such as wildfires and timber harvesting events. We used a landscape‐scale model of forest succession, wildfire, and C dynamics (LANDIS‐II) to evaluate the effects of a changing climate (A2 and B1 IPCC emissions; Geophysical Fluid Dynamics Laboratory General Circulation Models) on total forest C, tree species composition, and wildfire dynamics in the Lake Tahoe Basin, California, and Nevada. The independent effects of temperature and precipitation were assessed within and among climate models. Results highlight the importance of modeling forest succession and stand development processes at the landscape scale for understanding the C cycle. Due primarily to landscape legacy effects of historic logging of the Comstock Era in the late 1880s, C sequestration may continue throughout the current century, and the forest will remain a C sink (Net Ecosystem Carbon Balance &gt; 0), regardless of climate regime. Climate change caused increases in temperatures limited simulated C sequestration potential because of augmented fire activity and reduced establishment ability of subalpine and upper montane trees. Higher temperatures influenced forest response more than reduced precipitation. As the forest reached its potential steady state, the forest could become C neutral or a C source, and climate change could accelerate this transition. The future of forest ecosystem C cycling in many forested systems worldwide may depend more on major disturbances and landscape legacies related to land use than on projected climate change alone.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Basins</subject><subject>Biological and medical sciences</subject><subject>California</subject><subject>carbon</subject><subject>Carbon Cycle</subject><subject>Carbon sequestration</subject><subject>Climate Change</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Coniferophyta - growth &amp; development</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>fire</subject><subject>Fires</subject><subject>Forest &amp; brush fires</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>General forest ecology</subject><subject>Generalities. Production, biomass. Quality of wood and forest products. General forest ecology</subject><subject>Greenhouse gases</subject><subject>LANDIS-II</subject><subject>landscape legacy</subject><subject>Meteorology</subject><subject>Models, Theoretical</subject><subject>net ecosystem carbon balance</subject><subject>Nevada</subject><subject>soil</subject><subject>Synecology</subject><subject>Trees - growth &amp; development</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0V1v1SAYB_DGuLg5vfALGBJjohfdgKdAuztt9GxmmTfz5Y4AhSOzLUdoo-fby3nZlpiYjBsI-fE8wL8oXhB8QvI4XRp9QigQ_Kg4IsBZSauaP96sWVUSTOCweJrSDcYYKOZPikMKNSWs5kdFalXUYUTdelSDNwn5EU0_LHLzNMc8hWjTdLbd8sMqxEmNxqLgUB_GZTnZOKA0G2NT8mFUPertUpk1UmOHTO8HNdnS-VzIj9kqM2WVnhUHTvXJPt_Px8WXjx-u2_Py8vPion13WRpGKS6ttpbXgnFiOuqUqDuiAAMmXSUYbYSiXVUJDhRAa6c7p6tG0wZzAppR0cFx8WZXdxXDrzm_Qw4-Gdv3arRhTpJUVU0pYxQ_jBKKH0YBmhoYy_TVP_QmzDF_01YRzkHUTVZvd8rEkFK0Tq5i_rm4lgTLTb4y5yu3-Wb7cl9x1oPt7uRtoBm83gOVjOpdzHn5dO9EgwnDm6ud7txv39v1_zvKRfv-tnW5O-HTZP_cnVDxp-QCBJPfrhbyur2C71_xJ0ngL4c7yVw</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Loudermilk, E. Louise</creator><creator>Scheller, Robert M.</creator><creator>Weisberg, Peter J.</creator><creator>Yang, Jian</creator><creator>Dilts, Thomas E.</creator><creator>Karam, Sarah L.</creator><creator>Skinner, Carl</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>7ST</scope><scope>7U6</scope><scope>SOI</scope></search><sort><creationdate>201311</creationdate><title>Carbon dynamics in the future forest: the importance of long-term successional legacy and climate-fire interactions</title><author>Loudermilk, E. Louise ; Scheller, Robert M. ; Weisberg, Peter J. ; Yang, Jian ; Dilts, Thomas E. ; Karam, Sarah L. ; Skinner, Carl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5220-ebee687561cd2fa78d1a30301d475297a2d44763233bbfbdfb49b290613b527d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Basins</topic><topic>Biological and medical sciences</topic><topic>California</topic><topic>carbon</topic><topic>Carbon Cycle</topic><topic>Carbon sequestration</topic><topic>Climate Change</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Coniferophyta - growth &amp; development</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>fire</topic><topic>Fires</topic><topic>Forest &amp; brush fires</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>General forest ecology</topic><topic>Generalities. Production, biomass. Quality of wood and forest products. General forest ecology</topic><topic>Greenhouse gases</topic><topic>LANDIS-II</topic><topic>landscape legacy</topic><topic>Meteorology</topic><topic>Models, Theoretical</topic><topic>net ecosystem carbon balance</topic><topic>Nevada</topic><topic>soil</topic><topic>Synecology</topic><topic>Trees - growth &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loudermilk, E. Louise</creatorcontrib><creatorcontrib>Scheller, Robert M.</creatorcontrib><creatorcontrib>Weisberg, Peter J.</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Dilts, Thomas E.</creatorcontrib><creatorcontrib>Karam, Sarah L.</creatorcontrib><creatorcontrib>Skinner, Carl</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loudermilk, E. Louise</au><au>Scheller, Robert M.</au><au>Weisberg, Peter J.</au><au>Yang, Jian</au><au>Dilts, Thomas E.</au><au>Karam, Sarah L.</au><au>Skinner, Carl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon dynamics in the future forest: the importance of long-term successional legacy and climate-fire interactions</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Change Biol</addtitle><date>2013-11</date><risdate>2013</risdate><volume>19</volume><issue>11</issue><spage>3502</spage><epage>3515</epage><pages>3502-3515</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Understanding how climate change may influence forest carbon (C) budgets requires knowledge of forest growth relationships with regional climate, long‐term forest succession, and past and future disturbances, such as wildfires and timber harvesting events. We used a landscape‐scale model of forest succession, wildfire, and C dynamics (LANDIS‐II) to evaluate the effects of a changing climate (A2 and B1 IPCC emissions; Geophysical Fluid Dynamics Laboratory General Circulation Models) on total forest C, tree species composition, and wildfire dynamics in the Lake Tahoe Basin, California, and Nevada. The independent effects of temperature and precipitation were assessed within and among climate models. Results highlight the importance of modeling forest succession and stand development processes at the landscape scale for understanding the C cycle. Due primarily to landscape legacy effects of historic logging of the Comstock Era in the late 1880s, C sequestration may continue throughout the current century, and the forest will remain a C sink (Net Ecosystem Carbon Balance &gt; 0), regardless of climate regime. Climate change caused increases in temperatures limited simulated C sequestration potential because of augmented fire activity and reduced establishment ability of subalpine and upper montane trees. Higher temperatures influenced forest response more than reduced precipitation. As the forest reached its potential steady state, the forest could become C neutral or a C source, and climate change could accelerate this transition. The future of forest ecosystem C cycling in many forested systems worldwide may depend more on major disturbances and landscape legacies related to land use than on projected climate change alone.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>23821586</pmid><doi>10.1111/gcb.12310</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2013-11, Vol.19 (11), p.3502-3515
issn 1354-1013
1365-2486
language eng
recordid cdi_proquest_miscellaneous_1448225520
source MEDLINE; Access via Wiley Online Library
subjects Animal and plant ecology
Animal, plant and microbial ecology
Basins
Biological and medical sciences
California
carbon
Carbon Cycle
Carbon sequestration
Climate Change
Climatology. Bioclimatology. Climate change
Coniferophyta - growth & development
Earth, ocean, space
Exact sciences and technology
External geophysics
fire
Fires
Forest & brush fires
Forestry
Fundamental and applied biological sciences. Psychology
General aspects
General forest ecology
Generalities. Production, biomass. Quality of wood and forest products. General forest ecology
Greenhouse gases
LANDIS-II
landscape legacy
Meteorology
Models, Theoretical
net ecosystem carbon balance
Nevada
soil
Synecology
Trees - growth & development
title Carbon dynamics in the future forest: the importance of long-term successional legacy and climate-fire interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20dynamics%20in%20the%20future%20forest:%20the%20importance%20of%20long-term%20successional%20legacy%20and%20climate-fire%20interactions&rft.jtitle=Global%20change%20biology&rft.au=Loudermilk,%20E.%20Louise&rft.date=2013-11&rft.volume=19&rft.issue=11&rft.spage=3502&rft.epage=3515&rft.pages=3502-3515&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.12310&rft_dat=%3Cproquest_cross%3E1443398355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441663789&rft_id=info:pmid/23821586&rfr_iscdi=true