Carbon dynamics in the future forest: the importance of long-term successional legacy and climate-fire interactions
Understanding how climate change may influence forest carbon (C) budgets requires knowledge of forest growth relationships with regional climate, long‐term forest succession, and past and future disturbances, such as wildfires and timber harvesting events. We used a landscape‐scale model of forest s...
Gespeichert in:
Veröffentlicht in: | Global change biology 2013-11, Vol.19 (11), p.3502-3515 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3515 |
---|---|
container_issue | 11 |
container_start_page | 3502 |
container_title | Global change biology |
container_volume | 19 |
creator | Loudermilk, E. Louise Scheller, Robert M. Weisberg, Peter J. Yang, Jian Dilts, Thomas E. Karam, Sarah L. Skinner, Carl |
description | Understanding how climate change may influence forest carbon (C) budgets requires knowledge of forest growth relationships with regional climate, long‐term forest succession, and past and future disturbances, such as wildfires and timber harvesting events. We used a landscape‐scale model of forest succession, wildfire, and C dynamics (LANDIS‐II) to evaluate the effects of a changing climate (A2 and B1 IPCC emissions; Geophysical Fluid Dynamics Laboratory General Circulation Models) on total forest C, tree species composition, and wildfire dynamics in the Lake Tahoe Basin, California, and Nevada. The independent effects of temperature and precipitation were assessed within and among climate models. Results highlight the importance of modeling forest succession and stand development processes at the landscape scale for understanding the C cycle. Due primarily to landscape legacy effects of historic logging of the Comstock Era in the late 1880s, C sequestration may continue throughout the current century, and the forest will remain a C sink (Net Ecosystem Carbon Balance > 0), regardless of climate regime. Climate change caused increases in temperatures limited simulated C sequestration potential because of augmented fire activity and reduced establishment ability of subalpine and upper montane trees. Higher temperatures influenced forest response more than reduced precipitation. As the forest reached its potential steady state, the forest could become C neutral or a C source, and climate change could accelerate this transition. The future of forest ecosystem C cycling in many forested systems worldwide may depend more on major disturbances and landscape legacies related to land use than on projected climate change alone. |
doi_str_mv | 10.1111/gcb.12310 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448225520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1443398355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5220-ebee687561cd2fa78d1a30301d475297a2d44763233bbfbdfb49b290613b527d3</originalsourceid><addsrcrecordid>eNqN0V1v1SAYB_DGuLg5vfALGBJjohfdgKdAuztt9GxmmTfz5Y4AhSOzLUdoo-fby3nZlpiYjBsI-fE8wL8oXhB8QvI4XRp9QigQ_Kg4IsBZSauaP96sWVUSTOCweJrSDcYYKOZPikMKNSWs5kdFalXUYUTdelSDNwn5EU0_LHLzNMc8hWjTdLbd8sMqxEmNxqLgUB_GZTnZOKA0G2NT8mFUPertUpk1UmOHTO8HNdnS-VzIj9kqM2WVnhUHTvXJPt_Px8WXjx-u2_Py8vPion13WRpGKS6ttpbXgnFiOuqUqDuiAAMmXSUYbYSiXVUJDhRAa6c7p6tG0wZzAppR0cFx8WZXdxXDrzm_Qw4-Gdv3arRhTpJUVU0pYxQ_jBKKH0YBmhoYy_TVP_QmzDF_01YRzkHUTVZvd8rEkFK0Tq5i_rm4lgTLTb4y5yu3-Wb7cl9x1oPt7uRtoBm83gOVjOpdzHn5dO9EgwnDm6ud7txv39v1_zvKRfv-tnW5O-HTZP_cnVDxp-QCBJPfrhbyur2C71_xJ0ngL4c7yVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441663789</pqid></control><display><type>article</type><title>Carbon dynamics in the future forest: the importance of long-term successional legacy and climate-fire interactions</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Loudermilk, E. Louise ; Scheller, Robert M. ; Weisberg, Peter J. ; Yang, Jian ; Dilts, Thomas E. ; Karam, Sarah L. ; Skinner, Carl</creator><creatorcontrib>Loudermilk, E. Louise ; Scheller, Robert M. ; Weisberg, Peter J. ; Yang, Jian ; Dilts, Thomas E. ; Karam, Sarah L. ; Skinner, Carl</creatorcontrib><description>Understanding how climate change may influence forest carbon (C) budgets requires knowledge of forest growth relationships with regional climate, long‐term forest succession, and past and future disturbances, such as wildfires and timber harvesting events. We used a landscape‐scale model of forest succession, wildfire, and C dynamics (LANDIS‐II) to evaluate the effects of a changing climate (A2 and B1 IPCC emissions; Geophysical Fluid Dynamics Laboratory General Circulation Models) on total forest C, tree species composition, and wildfire dynamics in the Lake Tahoe Basin, California, and Nevada. The independent effects of temperature and precipitation were assessed within and among climate models. Results highlight the importance of modeling forest succession and stand development processes at the landscape scale for understanding the C cycle. Due primarily to landscape legacy effects of historic logging of the Comstock Era in the late 1880s, C sequestration may continue throughout the current century, and the forest will remain a C sink (Net Ecosystem Carbon Balance > 0), regardless of climate regime. Climate change caused increases in temperatures limited simulated C sequestration potential because of augmented fire activity and reduced establishment ability of subalpine and upper montane trees. Higher temperatures influenced forest response more than reduced precipitation. As the forest reached its potential steady state, the forest could become C neutral or a C source, and climate change could accelerate this transition. The future of forest ecosystem C cycling in many forested systems worldwide may depend more on major disturbances and landscape legacies related to land use than on projected climate change alone.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.12310</identifier><identifier>PMID: 23821586</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Animal and plant ecology ; Animal, plant and microbial ecology ; Basins ; Biological and medical sciences ; California ; carbon ; Carbon Cycle ; Carbon sequestration ; Climate Change ; Climatology. Bioclimatology. Climate change ; Coniferophyta - growth & development ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; fire ; Fires ; Forest & brush fires ; Forestry ; Fundamental and applied biological sciences. Psychology ; General aspects ; General forest ecology ; Generalities. Production, biomass. Quality of wood and forest products. General forest ecology ; Greenhouse gases ; LANDIS-II ; landscape legacy ; Meteorology ; Models, Theoretical ; net ecosystem carbon balance ; Nevada ; soil ; Synecology ; Trees - growth & development</subject><ispartof>Global change biology, 2013-11, Vol.19 (11), p.3502-3515</ispartof><rights>Published 2013. This article is a U.S. Government work and is in the public domain in the USA.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5220-ebee687561cd2fa78d1a30301d475297a2d44763233bbfbdfb49b290613b527d3</citedby><cites>FETCH-LOGICAL-c5220-ebee687561cd2fa78d1a30301d475297a2d44763233bbfbdfb49b290613b527d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.12310$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.12310$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27901505$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23821586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loudermilk, E. Louise</creatorcontrib><creatorcontrib>Scheller, Robert M.</creatorcontrib><creatorcontrib>Weisberg, Peter J.</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Dilts, Thomas E.</creatorcontrib><creatorcontrib>Karam, Sarah L.</creatorcontrib><creatorcontrib>Skinner, Carl</creatorcontrib><title>Carbon dynamics in the future forest: the importance of long-term successional legacy and climate-fire interactions</title><title>Global change biology</title><addtitle>Glob Change Biol</addtitle><description>Understanding how climate change may influence forest carbon (C) budgets requires knowledge of forest growth relationships with regional climate, long‐term forest succession, and past and future disturbances, such as wildfires and timber harvesting events. We used a landscape‐scale model of forest succession, wildfire, and C dynamics (LANDIS‐II) to evaluate the effects of a changing climate (A2 and B1 IPCC emissions; Geophysical Fluid Dynamics Laboratory General Circulation Models) on total forest C, tree species composition, and wildfire dynamics in the Lake Tahoe Basin, California, and Nevada. The independent effects of temperature and precipitation were assessed within and among climate models. Results highlight the importance of modeling forest succession and stand development processes at the landscape scale for understanding the C cycle. Due primarily to landscape legacy effects of historic logging of the Comstock Era in the late 1880s, C sequestration may continue throughout the current century, and the forest will remain a C sink (Net Ecosystem Carbon Balance > 0), regardless of climate regime. Climate change caused increases in temperatures limited simulated C sequestration potential because of augmented fire activity and reduced establishment ability of subalpine and upper montane trees. Higher temperatures influenced forest response more than reduced precipitation. As the forest reached its potential steady state, the forest could become C neutral or a C source, and climate change could accelerate this transition. The future of forest ecosystem C cycling in many forested systems worldwide may depend more on major disturbances and landscape legacies related to land use than on projected climate change alone.</description><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Basins</subject><subject>Biological and medical sciences</subject><subject>California</subject><subject>carbon</subject><subject>Carbon Cycle</subject><subject>Carbon sequestration</subject><subject>Climate Change</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Coniferophyta - growth & development</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>fire</subject><subject>Fires</subject><subject>Forest & brush fires</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>General forest ecology</subject><subject>Generalities. Production, biomass. Quality of wood and forest products. General forest ecology</subject><subject>Greenhouse gases</subject><subject>LANDIS-II</subject><subject>landscape legacy</subject><subject>Meteorology</subject><subject>Models, Theoretical</subject><subject>net ecosystem carbon balance</subject><subject>Nevada</subject><subject>soil</subject><subject>Synecology</subject><subject>Trees - growth & development</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0V1v1SAYB_DGuLg5vfALGBJjohfdgKdAuztt9GxmmTfz5Y4AhSOzLUdoo-fby3nZlpiYjBsI-fE8wL8oXhB8QvI4XRp9QigQ_Kg4IsBZSauaP96sWVUSTOCweJrSDcYYKOZPikMKNSWs5kdFalXUYUTdelSDNwn5EU0_LHLzNMc8hWjTdLbd8sMqxEmNxqLgUB_GZTnZOKA0G2NT8mFUPertUpk1UmOHTO8HNdnS-VzIj9kqM2WVnhUHTvXJPt_Px8WXjx-u2_Py8vPion13WRpGKS6ttpbXgnFiOuqUqDuiAAMmXSUYbYSiXVUJDhRAa6c7p6tG0wZzAppR0cFx8WZXdxXDrzm_Qw4-Gdv3arRhTpJUVU0pYxQ_jBKKH0YBmhoYy_TVP_QmzDF_01YRzkHUTVZvd8rEkFK0Tq5i_rm4lgTLTb4y5yu3-Wb7cl9x1oPt7uRtoBm83gOVjOpdzHn5dO9EgwnDm6ud7txv39v1_zvKRfv-tnW5O-HTZP_cnVDxp-QCBJPfrhbyur2C71_xJ0ngL4c7yVw</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Loudermilk, E. Louise</creator><creator>Scheller, Robert M.</creator><creator>Weisberg, Peter J.</creator><creator>Yang, Jian</creator><creator>Dilts, Thomas E.</creator><creator>Karam, Sarah L.</creator><creator>Skinner, Carl</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>7ST</scope><scope>7U6</scope><scope>SOI</scope></search><sort><creationdate>201311</creationdate><title>Carbon dynamics in the future forest: the importance of long-term successional legacy and climate-fire interactions</title><author>Loudermilk, E. Louise ; Scheller, Robert M. ; Weisberg, Peter J. ; Yang, Jian ; Dilts, Thomas E. ; Karam, Sarah L. ; Skinner, Carl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5220-ebee687561cd2fa78d1a30301d475297a2d44763233bbfbdfb49b290613b527d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Basins</topic><topic>Biological and medical sciences</topic><topic>California</topic><topic>carbon</topic><topic>Carbon Cycle</topic><topic>Carbon sequestration</topic><topic>Climate Change</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Coniferophyta - growth & development</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>fire</topic><topic>Fires</topic><topic>Forest & brush fires</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>General forest ecology</topic><topic>Generalities. Production, biomass. Quality of wood and forest products. General forest ecology</topic><topic>Greenhouse gases</topic><topic>LANDIS-II</topic><topic>landscape legacy</topic><topic>Meteorology</topic><topic>Models, Theoretical</topic><topic>net ecosystem carbon balance</topic><topic>Nevada</topic><topic>soil</topic><topic>Synecology</topic><topic>Trees - growth & development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loudermilk, E. Louise</creatorcontrib><creatorcontrib>Scheller, Robert M.</creatorcontrib><creatorcontrib>Weisberg, Peter J.</creatorcontrib><creatorcontrib>Yang, Jian</creatorcontrib><creatorcontrib>Dilts, Thomas E.</creatorcontrib><creatorcontrib>Karam, Sarah L.</creatorcontrib><creatorcontrib>Skinner, Carl</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loudermilk, E. Louise</au><au>Scheller, Robert M.</au><au>Weisberg, Peter J.</au><au>Yang, Jian</au><au>Dilts, Thomas E.</au><au>Karam, Sarah L.</au><au>Skinner, Carl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon dynamics in the future forest: the importance of long-term successional legacy and climate-fire interactions</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Change Biol</addtitle><date>2013-11</date><risdate>2013</risdate><volume>19</volume><issue>11</issue><spage>3502</spage><epage>3515</epage><pages>3502-3515</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Understanding how climate change may influence forest carbon (C) budgets requires knowledge of forest growth relationships with regional climate, long‐term forest succession, and past and future disturbances, such as wildfires and timber harvesting events. We used a landscape‐scale model of forest succession, wildfire, and C dynamics (LANDIS‐II) to evaluate the effects of a changing climate (A2 and B1 IPCC emissions; Geophysical Fluid Dynamics Laboratory General Circulation Models) on total forest C, tree species composition, and wildfire dynamics in the Lake Tahoe Basin, California, and Nevada. The independent effects of temperature and precipitation were assessed within and among climate models. Results highlight the importance of modeling forest succession and stand development processes at the landscape scale for understanding the C cycle. Due primarily to landscape legacy effects of historic logging of the Comstock Era in the late 1880s, C sequestration may continue throughout the current century, and the forest will remain a C sink (Net Ecosystem Carbon Balance > 0), regardless of climate regime. Climate change caused increases in temperatures limited simulated C sequestration potential because of augmented fire activity and reduced establishment ability of subalpine and upper montane trees. Higher temperatures influenced forest response more than reduced precipitation. As the forest reached its potential steady state, the forest could become C neutral or a C source, and climate change could accelerate this transition. The future of forest ecosystem C cycling in many forested systems worldwide may depend more on major disturbances and landscape legacies related to land use than on projected climate change alone.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><pmid>23821586</pmid><doi>10.1111/gcb.12310</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1354-1013 |
ispartof | Global change biology, 2013-11, Vol.19 (11), p.3502-3515 |
issn | 1354-1013 1365-2486 |
language | eng |
recordid | cdi_proquest_miscellaneous_1448225520 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animal and plant ecology Animal, plant and microbial ecology Basins Biological and medical sciences California carbon Carbon Cycle Carbon sequestration Climate Change Climatology. Bioclimatology. Climate change Coniferophyta - growth & development Earth, ocean, space Exact sciences and technology External geophysics fire Fires Forest & brush fires Forestry Fundamental and applied biological sciences. Psychology General aspects General forest ecology Generalities. Production, biomass. Quality of wood and forest products. General forest ecology Greenhouse gases LANDIS-II landscape legacy Meteorology Models, Theoretical net ecosystem carbon balance Nevada soil Synecology Trees - growth & development |
title | Carbon dynamics in the future forest: the importance of long-term successional legacy and climate-fire interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20dynamics%20in%20the%20future%20forest:%20the%20importance%20of%20long-term%20successional%20legacy%20and%20climate-fire%20interactions&rft.jtitle=Global%20change%20biology&rft.au=Loudermilk,%20E.%20Louise&rft.date=2013-11&rft.volume=19&rft.issue=11&rft.spage=3502&rft.epage=3515&rft.pages=3502-3515&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.12310&rft_dat=%3Cproquest_cross%3E1443398355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441663789&rft_id=info:pmid/23821586&rfr_iscdi=true |