Characteristic Effects of Stochastic Oscillatory Forcing on Neural Firing: Analytical Theory and Comparison to Paddlefish Electroreceptor Data: e1003170

Stochastic signals with pronounced oscillatory components are frequently encountered in neural systems. Input currents to a neuron in the form of stochastic oscillations could be of exogenous origin, e.g. sensory input or synaptic input from a network rhythm. They shape spike firing statistics in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2013-08, Vol.9 (8)
Hauptverfasser: Bauermeister, Christoph, Schwalger, Tilo, Russell, David F, Neiman, Alexander B, Lindner, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title PLoS computational biology
container_volume 9
creator Bauermeister, Christoph
Schwalger, Tilo
Russell, David F
Neiman, Alexander B
Lindner, Benjamin
description Stochastic signals with pronounced oscillatory components are frequently encountered in neural systems. Input currents to a neuron in the form of stochastic oscillations could be of exogenous origin, e.g. sensory input or synaptic input from a network rhythm. They shape spike firing statistics in a characteristic way, which we explore theoretically in this report. We consider a perfect integrate-and-fire neuron that is stimulated by a constant base current (to drive regular spontaneous firing), along with Gaussian narrow-band noise (a simple example of stochastic oscillations), and a broadband noise. We derive expressions for the nth-order interval distribution, its variance, and the serial correlation coefficients of the interspike intervals (ISIs) and confirm these analytical results by computer simulations. The theory is then applied to experimental data from electroreceptors of paddlefish, which have two distinct types of internal noisy oscillators, one forcing the other. The theory provides an analytical description of their afferent spiking statistics during spontaneous firing, and replicates a pronounced dependence of ISI serial correlation coefficients on the relative frequency of the driving oscillations, and furthermore allows extraction of certain parameters of the intrinsic oscillators embedded in these electroreceptors.
doi_str_mv 10.1371/journal.pcbi.1003170
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448221545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1448221545</sourcerecordid><originalsourceid>FETCH-LOGICAL-p615-8abec047341abd078b9e45da81b756e98d1fc74b28a700c8b0acc03a236064043</originalsourceid><addsrcrecordid>eNpdkDFPwzAQhS0EEqXwDxgssbCk2LEdu2xVaAGpokh0YKsujkNcpXGwk6F_gt-MCxUD052ePr279xC6pmRCmaR3Wzf4FppJpws7oYQwKskJGlEhWCKZUKd_O38_RxchbCMj1DQboa-8Bg-6N96G3mo8ryqj-4Bdhd96p2v4UVdB26aB3vk9XjivbfuBXYtfzOChwQvro3CPZ_GHfcSjtK7NgYW2xLnbdRDdI987_Apl2ZjKhhrPm3jJO2-06aIzfoAeLtFZBU0wV8c5RuvFfJ0_JcvV43M-WyZdRkWioDCa8BiHQlESqYqp4aIERQspMjNVJa205EWqQBKiVUFAa8IgZRnJOOFsjG5_bTvvPgcT-s3OBm1ixNa4IWwo5ypNqeAiojf_0GPbB4oxQjMpGfsGmm14pA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1433016773</pqid></control><display><type>article</type><title>Characteristic Effects of Stochastic Oscillatory Forcing on Neural Firing: Analytical Theory and Comparison to Paddlefish Electroreceptor Data: e1003170</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bauermeister, Christoph ; Schwalger, Tilo ; Russell, David F ; Neiman, Alexander B ; Lindner, Benjamin</creator><creatorcontrib>Bauermeister, Christoph ; Schwalger, Tilo ; Russell, David F ; Neiman, Alexander B ; Lindner, Benjamin</creatorcontrib><description>Stochastic signals with pronounced oscillatory components are frequently encountered in neural systems. Input currents to a neuron in the form of stochastic oscillations could be of exogenous origin, e.g. sensory input or synaptic input from a network rhythm. They shape spike firing statistics in a characteristic way, which we explore theoretically in this report. We consider a perfect integrate-and-fire neuron that is stimulated by a constant base current (to drive regular spontaneous firing), along with Gaussian narrow-band noise (a simple example of stochastic oscillations), and a broadband noise. We derive expressions for the nth-order interval distribution, its variance, and the serial correlation coefficients of the interspike intervals (ISIs) and confirm these analytical results by computer simulations. The theory is then applied to experimental data from electroreceptors of paddlefish, which have two distinct types of internal noisy oscillators, one forcing the other. The theory provides an analytical description of their afferent spiking statistics during spontaneous firing, and replicates a pronounced dependence of ISI serial correlation coefficients on the relative frequency of the driving oscillations, and furthermore allows extraction of certain parameters of the intrinsic oscillators embedded in these electroreceptors.</description><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003170</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Fourier transforms ; Neurons ; Noise ; Signal processing ; Studies ; Theory</subject><ispartof>PLoS computational biology, 2013-08, Vol.9 (8)</ispartof><rights>2013 Bauermeister et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Bauermeister C, Schwalger T, Russell DF, Neiman AB, Lindner B (2013) Characteristic Effects of Stochastic Oscillatory Forcing on Neural Firing: Analytical Theory and Comparison to Paddlefish Electroreceptor Data. PLoS Comput Biol 9(8): e1003170. doi:10.1371/journal.pcbi.1003170</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Bauermeister, Christoph</creatorcontrib><creatorcontrib>Schwalger, Tilo</creatorcontrib><creatorcontrib>Russell, David F</creatorcontrib><creatorcontrib>Neiman, Alexander B</creatorcontrib><creatorcontrib>Lindner, Benjamin</creatorcontrib><title>Characteristic Effects of Stochastic Oscillatory Forcing on Neural Firing: Analytical Theory and Comparison to Paddlefish Electroreceptor Data: e1003170</title><title>PLoS computational biology</title><description>Stochastic signals with pronounced oscillatory components are frequently encountered in neural systems. Input currents to a neuron in the form of stochastic oscillations could be of exogenous origin, e.g. sensory input or synaptic input from a network rhythm. They shape spike firing statistics in a characteristic way, which we explore theoretically in this report. We consider a perfect integrate-and-fire neuron that is stimulated by a constant base current (to drive regular spontaneous firing), along with Gaussian narrow-band noise (a simple example of stochastic oscillations), and a broadband noise. We derive expressions for the nth-order interval distribution, its variance, and the serial correlation coefficients of the interspike intervals (ISIs) and confirm these analytical results by computer simulations. The theory is then applied to experimental data from electroreceptors of paddlefish, which have two distinct types of internal noisy oscillators, one forcing the other. The theory provides an analytical description of their afferent spiking statistics during spontaneous firing, and replicates a pronounced dependence of ISI serial correlation coefficients on the relative frequency of the driving oscillations, and furthermore allows extraction of certain parameters of the intrinsic oscillators embedded in these electroreceptors.</description><subject>Fourier transforms</subject><subject>Neurons</subject><subject>Noise</subject><subject>Signal processing</subject><subject>Studies</subject><subject>Theory</subject><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkDFPwzAQhS0EEqXwDxgssbCk2LEdu2xVaAGpokh0YKsujkNcpXGwk6F_gt-MCxUD052ePr279xC6pmRCmaR3Wzf4FppJpws7oYQwKskJGlEhWCKZUKd_O38_RxchbCMj1DQboa-8Bg-6N96G3mo8ryqj-4Bdhd96p2v4UVdB26aB3vk9XjivbfuBXYtfzOChwQvro3CPZ_GHfcSjtK7NgYW2xLnbdRDdI987_Apl2ZjKhhrPm3jJO2-06aIzfoAeLtFZBU0wV8c5RuvFfJ0_JcvV43M-WyZdRkWioDCa8BiHQlESqYqp4aIERQspMjNVJa205EWqQBKiVUFAa8IgZRnJOOFsjG5_bTvvPgcT-s3OBm1ixNa4IWwo5ypNqeAiojf_0GPbB4oxQjMpGfsGmm14pA</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Bauermeister, Christoph</creator><creator>Schwalger, Tilo</creator><creator>Russell, David F</creator><creator>Neiman, Alexander B</creator><creator>Lindner, Benjamin</creator><general>Public Library of Science</general><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>20130801</creationdate><title>Characteristic Effects of Stochastic Oscillatory Forcing on Neural Firing: Analytical Theory and Comparison to Paddlefish Electroreceptor Data</title><author>Bauermeister, Christoph ; Schwalger, Tilo ; Russell, David F ; Neiman, Alexander B ; Lindner, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p615-8abec047341abd078b9e45da81b756e98d1fc74b28a700c8b0acc03a236064043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Fourier transforms</topic><topic>Neurons</topic><topic>Noise</topic><topic>Signal processing</topic><topic>Studies</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bauermeister, Christoph</creatorcontrib><creatorcontrib>Schwalger, Tilo</creatorcontrib><creatorcontrib>Russell, David F</creatorcontrib><creatorcontrib>Neiman, Alexander B</creatorcontrib><creatorcontrib>Lindner, Benjamin</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bauermeister, Christoph</au><au>Schwalger, Tilo</au><au>Russell, David F</au><au>Neiman, Alexander B</au><au>Lindner, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristic Effects of Stochastic Oscillatory Forcing on Neural Firing: Analytical Theory and Comparison to Paddlefish Electroreceptor Data: e1003170</atitle><jtitle>PLoS computational biology</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>9</volume><issue>8</issue><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Stochastic signals with pronounced oscillatory components are frequently encountered in neural systems. Input currents to a neuron in the form of stochastic oscillations could be of exogenous origin, e.g. sensory input or synaptic input from a network rhythm. They shape spike firing statistics in a characteristic way, which we explore theoretically in this report. We consider a perfect integrate-and-fire neuron that is stimulated by a constant base current (to drive regular spontaneous firing), along with Gaussian narrow-band noise (a simple example of stochastic oscillations), and a broadband noise. We derive expressions for the nth-order interval distribution, its variance, and the serial correlation coefficients of the interspike intervals (ISIs) and confirm these analytical results by computer simulations. The theory is then applied to experimental data from electroreceptors of paddlefish, which have two distinct types of internal noisy oscillators, one forcing the other. The theory provides an analytical description of their afferent spiking statistics during spontaneous firing, and replicates a pronounced dependence of ISI serial correlation coefficients on the relative frequency of the driving oscillations, and furthermore allows extraction of certain parameters of the intrinsic oscillators embedded in these electroreceptors.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><doi>10.1371/journal.pcbi.1003170</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-734X
ispartof PLoS computational biology, 2013-08, Vol.9 (8)
issn 1553-734X
1553-7358
language eng
recordid cdi_proquest_miscellaneous_1448221545
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Fourier transforms
Neurons
Noise
Signal processing
Studies
Theory
title Characteristic Effects of Stochastic Oscillatory Forcing on Neural Firing: Analytical Theory and Comparison to Paddlefish Electroreceptor Data: e1003170
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristic%20Effects%20of%20Stochastic%20Oscillatory%20Forcing%20on%20Neural%20Firing:%20Analytical%20Theory%20and%20Comparison%20to%20Paddlefish%20Electroreceptor%20Data:%20e1003170&rft.jtitle=PLoS%20computational%20biology&rft.au=Bauermeister,%20Christoph&rft.date=2013-08-01&rft.volume=9&rft.issue=8&rft.issn=1553-734X&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003170&rft_dat=%3Cproquest%3E1448221545%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1433016773&rft_id=info:pmid/&rfr_iscdi=true