Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size

We investigate stochastic and epidemic models, when there is a random environment that influences the spread of the infectious disease. The inclusion of an external environment into the epidemic model is done by replacing the constant transmission rates with dynamic rates governed by an environmenta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical biology 2013-10, Vol.67 (4), p.799-831
Hauptverfasser: Artalejo, J. R., Economou, A., Lopez-Herrero, M. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 831
container_issue 4
container_start_page 799
container_title Journal of mathematical biology
container_volume 67
creator Artalejo, J. R.
Economou, A.
Lopez-Herrero, M. J.
description We investigate stochastic and epidemic models, when there is a random environment that influences the spread of the infectious disease. The inclusion of an external environment into the epidemic model is done by replacing the constant transmission rates with dynamic rates governed by an environmental Markov chain. We put emphasis on the algorithmic evaluation of the influence of the environmental factors on the performance behavior of the epidemic model.
doi_str_mv 10.1007/s00285-012-0570-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448220159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1448220159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-55169619c818eede893a87aef6012ecb70d73064e81b0d0d3ba83a8e83e290f93</originalsourceid><addsrcrecordid>eNqNkU9vFSEUxYnR2Gf1A7gxJG5ciF5gYMCdafyXNOmiuia8mTuWZgZegVHbTy_PV01jYuIKAr9z7j05hDzl8IoD9K8LgDCKARcMVA9M3SMb3knBeMf1fbIBCZJpw8UReVTKJQDvleUPyZEQxoqm2BB_XtNw4UsNA8VdGHFplyWNOBf6PdQLmn0c00Ixfgs5xQVjfUOvVl8CK9XXkKLPoV6_pPijhjjsH2hT0ClEP9MSbvAxeTD5ueCT2_OYfHn_7vPJR3Z69uHTydtTNnSdqUwprq3mdjDcII5orPSm9zjpFg-HbQ9jL0F3aPgWRhjl1ptGoJEoLExWHpMXB99dTlcrluqWUAacZx8xrcXxNkYI4Op_UMmF1Ur3DX3-F3qZ1tyy_aLaQlLbrlH8QA05lZJxcrscFp-vHQe3r8odqnIti9tX5VTTPLt1XrcLjn8Uv7tpgDgApX3Fr5jvjP6n60_bmp5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1433063694</pqid></control><display><type>article</type><title>Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Artalejo, J. R. ; Economou, A. ; Lopez-Herrero, M. J.</creator><creatorcontrib>Artalejo, J. R. ; Economou, A. ; Lopez-Herrero, M. J.</creatorcontrib><description>We investigate stochastic and epidemic models, when there is a random environment that influences the spread of the infectious disease. The inclusion of an external environment into the epidemic model is done by replacing the constant transmission rates with dynamic rates governed by an environmental Markov chain. We put emphasis on the algorithmic evaluation of the influence of the environmental factors on the performance behavior of the epidemic model.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-012-0570-5</identifier><identifier>PMID: 22892570</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applications of Mathematics ; Communicable Diseases - epidemiology ; Environment ; Epidemics ; Epidemiologic Methods ; Humans ; Markov Chains ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Models, Statistical ; Stochastic Processes</subject><ispartof>Journal of mathematical biology, 2013-10, Vol.67 (4), p.799-831</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-55169619c818eede893a87aef6012ecb70d73064e81b0d0d3ba83a8e83e290f93</citedby><cites>FETCH-LOGICAL-c448t-55169619c818eede893a87aef6012ecb70d73064e81b0d0d3ba83a8e83e290f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-012-0570-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-012-0570-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22892570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Artalejo, J. R.</creatorcontrib><creatorcontrib>Economou, A.</creatorcontrib><creatorcontrib>Lopez-Herrero, M. J.</creatorcontrib><title>Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>We investigate stochastic and epidemic models, when there is a random environment that influences the spread of the infectious disease. The inclusion of an external environment into the epidemic model is done by replacing the constant transmission rates with dynamic rates governed by an environmental Markov chain. We put emphasis on the algorithmic evaluation of the influence of the environmental factors on the performance behavior of the epidemic model.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Communicable Diseases - epidemiology</subject><subject>Environment</subject><subject>Epidemics</subject><subject>Epidemiologic Methods</subject><subject>Humans</subject><subject>Markov Chains</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Statistical</subject><subject>Stochastic Processes</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU9vFSEUxYnR2Gf1A7gxJG5ciF5gYMCdafyXNOmiuia8mTuWZgZegVHbTy_PV01jYuIKAr9z7j05hDzl8IoD9K8LgDCKARcMVA9M3SMb3knBeMf1fbIBCZJpw8UReVTKJQDvleUPyZEQxoqm2BB_XtNw4UsNA8VdGHFplyWNOBf6PdQLmn0c00Ixfgs5xQVjfUOvVl8CK9XXkKLPoV6_pPijhjjsH2hT0ClEP9MSbvAxeTD5ueCT2_OYfHn_7vPJR3Z69uHTydtTNnSdqUwprq3mdjDcII5orPSm9zjpFg-HbQ9jL0F3aPgWRhjl1ptGoJEoLExWHpMXB99dTlcrluqWUAacZx8xrcXxNkYI4Op_UMmF1Ur3DX3-F3qZ1tyy_aLaQlLbrlH8QA05lZJxcrscFp-vHQe3r8odqnIti9tX5VTTPLt1XrcLjn8Uv7tpgDgApX3Fr5jvjP6n60_bmp5E</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Artalejo, J. R.</creator><creator>Economou, A.</creator><creator>Lopez-Herrero, M. J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20131001</creationdate><title>Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size</title><author>Artalejo, J. R. ; Economou, A. ; Lopez-Herrero, M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-55169619c818eede893a87aef6012ecb70d73064e81b0d0d3ba83a8e83e290f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Communicable Diseases - epidemiology</topic><topic>Environment</topic><topic>Epidemics</topic><topic>Epidemiologic Methods</topic><topic>Humans</topic><topic>Markov Chains</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Statistical</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Artalejo, J. R.</creatorcontrib><creatorcontrib>Economou, A.</creatorcontrib><creatorcontrib>Lopez-Herrero, M. J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Artalejo, J. R.</au><au>Economou, A.</au><au>Lopez-Herrero, M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>67</volume><issue>4</issue><spage>799</spage><epage>831</epage><pages>799-831</pages><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>We investigate stochastic and epidemic models, when there is a random environment that influences the spread of the infectious disease. The inclusion of an external environment into the epidemic model is done by replacing the constant transmission rates with dynamic rates governed by an environmental Markov chain. We put emphasis on the algorithmic evaluation of the influence of the environmental factors on the performance behavior of the epidemic model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>22892570</pmid><doi>10.1007/s00285-012-0570-5</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0303-6812
ispartof Journal of mathematical biology, 2013-10, Vol.67 (4), p.799-831
issn 0303-6812
1432-1416
language eng
recordid cdi_proquest_miscellaneous_1448220159
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Algorithms
Applications of Mathematics
Communicable Diseases - epidemiology
Environment
Epidemics
Epidemiologic Methods
Humans
Markov Chains
Mathematical and Computational Biology
Mathematics
Mathematics and Statistics
Models, Statistical
Stochastic Processes
title Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A50%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20epidemic%20models%20with%20random%20environment:%20quasi-stationarity,%20extinction%20and%20final%20size&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Artalejo,%20J.%20R.&rft.date=2013-10-01&rft.volume=67&rft.issue=4&rft.spage=799&rft.epage=831&rft.pages=799-831&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-012-0570-5&rft_dat=%3Cproquest_cross%3E1448220159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1433063694&rft_id=info:pmid/22892570&rfr_iscdi=true