Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size
We investigate stochastic and epidemic models, when there is a random environment that influences the spread of the infectious disease. The inclusion of an external environment into the epidemic model is done by replacing the constant transmission rates with dynamic rates governed by an environmenta...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical biology 2013-10, Vol.67 (4), p.799-831 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 831 |
---|---|
container_issue | 4 |
container_start_page | 799 |
container_title | Journal of mathematical biology |
container_volume | 67 |
creator | Artalejo, J. R. Economou, A. Lopez-Herrero, M. J. |
description | We investigate stochastic
and
epidemic models, when there is a random environment that influences the spread of the infectious disease. The inclusion of an external environment into the epidemic model is done by replacing the constant transmission rates with dynamic rates governed by an environmental Markov chain. We put emphasis on the algorithmic evaluation of the influence of the environmental factors on the performance behavior of the epidemic model. |
doi_str_mv | 10.1007/s00285-012-0570-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448220159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1448220159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-55169619c818eede893a87aef6012ecb70d73064e81b0d0d3ba83a8e83e290f93</originalsourceid><addsrcrecordid>eNqNkU9vFSEUxYnR2Gf1A7gxJG5ciF5gYMCdafyXNOmiuia8mTuWZgZegVHbTy_PV01jYuIKAr9z7j05hDzl8IoD9K8LgDCKARcMVA9M3SMb3knBeMf1fbIBCZJpw8UReVTKJQDvleUPyZEQxoqm2BB_XtNw4UsNA8VdGHFplyWNOBf6PdQLmn0c00Ixfgs5xQVjfUOvVl8CK9XXkKLPoV6_pPijhjjsH2hT0ClEP9MSbvAxeTD5ueCT2_OYfHn_7vPJR3Z69uHTydtTNnSdqUwprq3mdjDcII5orPSm9zjpFg-HbQ9jL0F3aPgWRhjl1ptGoJEoLExWHpMXB99dTlcrluqWUAacZx8xrcXxNkYI4Op_UMmF1Ur3DX3-F3qZ1tyy_aLaQlLbrlH8QA05lZJxcrscFp-vHQe3r8odqnIti9tX5VTTPLt1XrcLjn8Uv7tpgDgApX3Fr5jvjP6n60_bmp5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1433063694</pqid></control><display><type>article</type><title>Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Artalejo, J. R. ; Economou, A. ; Lopez-Herrero, M. J.</creator><creatorcontrib>Artalejo, J. R. ; Economou, A. ; Lopez-Herrero, M. J.</creatorcontrib><description>We investigate stochastic
and
epidemic models, when there is a random environment that influences the spread of the infectious disease. The inclusion of an external environment into the epidemic model is done by replacing the constant transmission rates with dynamic rates governed by an environmental Markov chain. We put emphasis on the algorithmic evaluation of the influence of the environmental factors on the performance behavior of the epidemic model.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-012-0570-5</identifier><identifier>PMID: 22892570</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Applications of Mathematics ; Communicable Diseases - epidemiology ; Environment ; Epidemics ; Epidemiologic Methods ; Humans ; Markov Chains ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Models, Statistical ; Stochastic Processes</subject><ispartof>Journal of mathematical biology, 2013-10, Vol.67 (4), p.799-831</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-55169619c818eede893a87aef6012ecb70d73064e81b0d0d3ba83a8e83e290f93</citedby><cites>FETCH-LOGICAL-c448t-55169619c818eede893a87aef6012ecb70d73064e81b0d0d3ba83a8e83e290f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-012-0570-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-012-0570-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22892570$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Artalejo, J. R.</creatorcontrib><creatorcontrib>Economou, A.</creatorcontrib><creatorcontrib>Lopez-Herrero, M. J.</creatorcontrib><title>Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>We investigate stochastic
and
epidemic models, when there is a random environment that influences the spread of the infectious disease. The inclusion of an external environment into the epidemic model is done by replacing the constant transmission rates with dynamic rates governed by an environmental Markov chain. We put emphasis on the algorithmic evaluation of the influence of the environmental factors on the performance behavior of the epidemic model.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Communicable Diseases - epidemiology</subject><subject>Environment</subject><subject>Epidemics</subject><subject>Epidemiologic Methods</subject><subject>Humans</subject><subject>Markov Chains</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Statistical</subject><subject>Stochastic Processes</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU9vFSEUxYnR2Gf1A7gxJG5ciF5gYMCdafyXNOmiuia8mTuWZgZegVHbTy_PV01jYuIKAr9z7j05hDzl8IoD9K8LgDCKARcMVA9M3SMb3knBeMf1fbIBCZJpw8UReVTKJQDvleUPyZEQxoqm2BB_XtNw4UsNA8VdGHFplyWNOBf6PdQLmn0c00Ixfgs5xQVjfUOvVl8CK9XXkKLPoV6_pPijhjjsH2hT0ClEP9MSbvAxeTD5ueCT2_OYfHn_7vPJR3Z69uHTydtTNnSdqUwprq3mdjDcII5orPSm9zjpFg-HbQ9jL0F3aPgWRhjl1ptGoJEoLExWHpMXB99dTlcrluqWUAacZx8xrcXxNkYI4Op_UMmF1Ur3DX3-F3qZ1tyy_aLaQlLbrlH8QA05lZJxcrscFp-vHQe3r8odqnIti9tX5VTTPLt1XrcLjn8Uv7tpgDgApX3Fr5jvjP6n60_bmp5E</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Artalejo, J. R.</creator><creator>Economou, A.</creator><creator>Lopez-Herrero, M. J.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7T2</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20131001</creationdate><title>Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size</title><author>Artalejo, J. R. ; Economou, A. ; Lopez-Herrero, M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-55169619c818eede893a87aef6012ecb70d73064e81b0d0d3ba83a8e83e290f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Communicable Diseases - epidemiology</topic><topic>Environment</topic><topic>Epidemics</topic><topic>Epidemiologic Methods</topic><topic>Humans</topic><topic>Markov Chains</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Statistical</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Artalejo, J. R.</creatorcontrib><creatorcontrib>Economou, A.</creatorcontrib><creatorcontrib>Lopez-Herrero, M. J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Artalejo, J. R.</au><au>Economou, A.</au><au>Lopez-Herrero, M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>67</volume><issue>4</issue><spage>799</spage><epage>831</epage><pages>799-831</pages><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>We investigate stochastic
and
epidemic models, when there is a random environment that influences the spread of the infectious disease. The inclusion of an external environment into the epidemic model is done by replacing the constant transmission rates with dynamic rates governed by an environmental Markov chain. We put emphasis on the algorithmic evaluation of the influence of the environmental factors on the performance behavior of the epidemic model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>22892570</pmid><doi>10.1007/s00285-012-0570-5</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-6812 |
ispartof | Journal of mathematical biology, 2013-10, Vol.67 (4), p.799-831 |
issn | 0303-6812 1432-1416 |
language | eng |
recordid | cdi_proquest_miscellaneous_1448220159 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Algorithms Applications of Mathematics Communicable Diseases - epidemiology Environment Epidemics Epidemiologic Methods Humans Markov Chains Mathematical and Computational Biology Mathematics Mathematics and Statistics Models, Statistical Stochastic Processes |
title | Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A50%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20epidemic%20models%20with%20random%20environment:%20quasi-stationarity,%20extinction%20and%20final%20size&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Artalejo,%20J.%20R.&rft.date=2013-10-01&rft.volume=67&rft.issue=4&rft.spage=799&rft.epage=831&rft.pages=799-831&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-012-0570-5&rft_dat=%3Cproquest_cross%3E1448220159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1433063694&rft_id=info:pmid/22892570&rfr_iscdi=true |