Trichoderma Research in the Genome Era
Trichoderma species are widely used in agriculture and industry as biopesticides and sources of enzymes, respectively. These fungi reproduce asexually by production of conidia and chlamydospores and in wild habitats by ascospores. Trichoderma species are efficient mycoparasites and prolific producer...
Gespeichert in:
Veröffentlicht in: | Annual review of phytopathology 2013-01, Vol.51 (1), p.105-129 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 129 |
---|---|
container_issue | 1 |
container_start_page | 105 |
container_title | Annual review of phytopathology |
container_volume | 51 |
creator | MUKHERJEE, Prasun K HORWITZ, Benjamin A HERRERA-ESTRELLA, Alfredo SCHMOLL, Monika KENERLEY, Charles M |
description | Trichoderma species are widely used in agriculture and industry as biopesticides and sources of enzymes, respectively. These fungi reproduce asexually by production of conidia and chlamydospores and in wild habitats by ascospores. Trichoderma species are efficient mycoparasites and prolific producers of secondary metabolites, some of which have clinical importance. However, the ecological or biological significance of this metabolite diversity is sorely lagging behind the chemical significance. Many strains produce elicitors and induce resistance in plants through colonization of roots. Seven species have now been sequenced. Comparison of a primarily saprophytic species with two mycoparasitic species has provided striking contrasts and has established that mycoparasitism is an ancestral trait of this genus. Among the interesting outcomes of genome comparison is the discovery of a vast repertoire of secondary metabolism pathways and of numerous small cysteine-rich secreted proteins. Genomics has also facilitated investigation of sexual crossing in Trichoderma reesei, suggesting the possibility of strain improvement through hybridization. |
doi_str_mv | 10.1146/annurev-phyto-082712-102353 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1448215227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1418362527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-a925f02d92f412f2f85a74c1c766119865c4f432608d9021ea9fffc92addfe0f3</originalsourceid><addsrcrecordid>eNqN0E1Lw0AQgOFFFFurf0EConiJ7sx-JMGTlFqFgiD1vKybXRLJR91NhP57axP16mku78zAQ8gF0BsALm910_TefsabYtu1MU0xAYyBIhPsgExBcBEj0OSQTCmVMuaYygk5CeGdUpoxzo7JBFkGAhhOydXal6Zoc-trHb3YYLU3RVQ2UVfYaGmbtrbRwutTcuR0FezZOGfk9WGxnj_Gq-fl0_x-FRsuaBfrDIWjmGfoOKBDlwqdcAMmkRIgS6Uw3HGGkqZ5RhGszpxzJkOd585Sx2bkeri78e1Hb0On6jIYW1W6sW0fFHCeIgjE5B8ppEyi2Kd3Q2p8G4K3Tm18WWu_VUDVt6kaTdXeVA2majDdbZ-Pj_q32ua_uz-Iu-ByDHQwunJeN6YMf12SJhIZY1-jboFi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418362527</pqid></control><display><type>article</type><title>Trichoderma Research in the Genome Era</title><source>Annual Reviews Complete A-Z List</source><source>MEDLINE</source><creator>MUKHERJEE, Prasun K ; HORWITZ, Benjamin A ; HERRERA-ESTRELLA, Alfredo ; SCHMOLL, Monika ; KENERLEY, Charles M</creator><creatorcontrib>MUKHERJEE, Prasun K ; HORWITZ, Benjamin A ; HERRERA-ESTRELLA, Alfredo ; SCHMOLL, Monika ; KENERLEY, Charles M</creatorcontrib><description>Trichoderma species are widely used in agriculture and industry as biopesticides and sources of enzymes, respectively. These fungi reproduce asexually by production of conidia and chlamydospores and in wild habitats by ascospores. Trichoderma species are efficient mycoparasites and prolific producers of secondary metabolites, some of which have clinical importance. However, the ecological or biological significance of this metabolite diversity is sorely lagging behind the chemical significance. Many strains produce elicitors and induce resistance in plants through colonization of roots. Seven species have now been sequenced. Comparison of a primarily saprophytic species with two mycoparasitic species has provided striking contrasts and has established that mycoparasitism is an ancestral trait of this genus. Among the interesting outcomes of genome comparison is the discovery of a vast repertoire of secondary metabolism pathways and of numerous small cysteine-rich secreted proteins. Genomics has also facilitated investigation of sexual crossing in Trichoderma reesei, suggesting the possibility of strain improvement through hybridization.</description><identifier>ISSN: 0066-4286</identifier><identifier>EISSN: 1545-2107</identifier><identifier>DOI: 10.1146/annurev-phyto-082712-102353</identifier><identifier>PMID: 23915132</identifier><identifier>CODEN: APPYAG</identifier><language>eng</language><publisher>Palo Alto, CA: Annual Reviews</publisher><subject>Agriculture ; Biological and medical sciences ; Biological Control Agents ; Biological Evolution ; Fundamental and applied biological sciences. Psychology ; Fungal plant pathogens ; Fungal Proteins - genetics ; Genome, Fungal - genetics ; Genomics ; Host-Pathogen Interactions ; Hypocrea jecorina ; Multigene Family ; Phytopathology. Animal pests. Plant and forest protection ; Plants - microbiology ; Trichoderma - cytology ; Trichoderma - genetics ; Trichoderma - growth & development ; Trichoderma - physiology</subject><ispartof>Annual review of phytopathology, 2013-01, Vol.51 (1), p.105-129</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-a925f02d92f412f2f85a74c1c766119865c4f432608d9021ea9fffc92addfe0f3</citedby><cites>FETCH-LOGICAL-c450t-a925f02d92f412f2f85a74c1c766119865c4f432608d9021ea9fffc92addfe0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4168,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27876233$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23915132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>MUKHERJEE, Prasun K</creatorcontrib><creatorcontrib>HORWITZ, Benjamin A</creatorcontrib><creatorcontrib>HERRERA-ESTRELLA, Alfredo</creatorcontrib><creatorcontrib>SCHMOLL, Monika</creatorcontrib><creatorcontrib>KENERLEY, Charles M</creatorcontrib><title>Trichoderma Research in the Genome Era</title><title>Annual review of phytopathology</title><addtitle>Annu Rev Phytopathol</addtitle><description>Trichoderma species are widely used in agriculture and industry as biopesticides and sources of enzymes, respectively. These fungi reproduce asexually by production of conidia and chlamydospores and in wild habitats by ascospores. Trichoderma species are efficient mycoparasites and prolific producers of secondary metabolites, some of which have clinical importance. However, the ecological or biological significance of this metabolite diversity is sorely lagging behind the chemical significance. Many strains produce elicitors and induce resistance in plants through colonization of roots. Seven species have now been sequenced. Comparison of a primarily saprophytic species with two mycoparasitic species has provided striking contrasts and has established that mycoparasitism is an ancestral trait of this genus. Among the interesting outcomes of genome comparison is the discovery of a vast repertoire of secondary metabolism pathways and of numerous small cysteine-rich secreted proteins. Genomics has also facilitated investigation of sexual crossing in Trichoderma reesei, suggesting the possibility of strain improvement through hybridization.</description><subject>Agriculture</subject><subject>Biological and medical sciences</subject><subject>Biological Control Agents</subject><subject>Biological Evolution</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal plant pathogens</subject><subject>Fungal Proteins - genetics</subject><subject>Genome, Fungal - genetics</subject><subject>Genomics</subject><subject>Host-Pathogen Interactions</subject><subject>Hypocrea jecorina</subject><subject>Multigene Family</subject><subject>Phytopathology. Animal pests. Plant and forest protection</subject><subject>Plants - microbiology</subject><subject>Trichoderma - cytology</subject><subject>Trichoderma - genetics</subject><subject>Trichoderma - growth & development</subject><subject>Trichoderma - physiology</subject><issn>0066-4286</issn><issn>1545-2107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0E1Lw0AQgOFFFFurf0EConiJ7sx-JMGTlFqFgiD1vKybXRLJR91NhP57axP16mku78zAQ8gF0BsALm910_TefsabYtu1MU0xAYyBIhPsgExBcBEj0OSQTCmVMuaYygk5CeGdUpoxzo7JBFkGAhhOydXal6Zoc-trHb3YYLU3RVQ2UVfYaGmbtrbRwutTcuR0FezZOGfk9WGxnj_Gq-fl0_x-FRsuaBfrDIWjmGfoOKBDlwqdcAMmkRIgS6Uw3HGGkqZ5RhGszpxzJkOd585Sx2bkeri78e1Hb0On6jIYW1W6sW0fFHCeIgjE5B8ppEyi2Kd3Q2p8G4K3Tm18WWu_VUDVt6kaTdXeVA2majDdbZ-Pj_q32ua_uz-Iu-ByDHQwunJeN6YMf12SJhIZY1-jboFi</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>MUKHERJEE, Prasun K</creator><creator>HORWITZ, Benjamin A</creator><creator>HERRERA-ESTRELLA, Alfredo</creator><creator>SCHMOLL, Monika</creator><creator>KENERLEY, Charles M</creator><general>Annual Reviews</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20130101</creationdate><title>Trichoderma Research in the Genome Era</title><author>MUKHERJEE, Prasun K ; HORWITZ, Benjamin A ; HERRERA-ESTRELLA, Alfredo ; SCHMOLL, Monika ; KENERLEY, Charles M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-a925f02d92f412f2f85a74c1c766119865c4f432608d9021ea9fffc92addfe0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agriculture</topic><topic>Biological and medical sciences</topic><topic>Biological Control Agents</topic><topic>Biological Evolution</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal plant pathogens</topic><topic>Fungal Proteins - genetics</topic><topic>Genome, Fungal - genetics</topic><topic>Genomics</topic><topic>Host-Pathogen Interactions</topic><topic>Hypocrea jecorina</topic><topic>Multigene Family</topic><topic>Phytopathology. Animal pests. Plant and forest protection</topic><topic>Plants - microbiology</topic><topic>Trichoderma - cytology</topic><topic>Trichoderma - genetics</topic><topic>Trichoderma - growth & development</topic><topic>Trichoderma - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MUKHERJEE, Prasun K</creatorcontrib><creatorcontrib>HORWITZ, Benjamin A</creatorcontrib><creatorcontrib>HERRERA-ESTRELLA, Alfredo</creatorcontrib><creatorcontrib>SCHMOLL, Monika</creatorcontrib><creatorcontrib>KENERLEY, Charles M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Annual review of phytopathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MUKHERJEE, Prasun K</au><au>HORWITZ, Benjamin A</au><au>HERRERA-ESTRELLA, Alfredo</au><au>SCHMOLL, Monika</au><au>KENERLEY, Charles M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trichoderma Research in the Genome Era</atitle><jtitle>Annual review of phytopathology</jtitle><addtitle>Annu Rev Phytopathol</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>51</volume><issue>1</issue><spage>105</spage><epage>129</epage><pages>105-129</pages><issn>0066-4286</issn><eissn>1545-2107</eissn><coden>APPYAG</coden><abstract>Trichoderma species are widely used in agriculture and industry as biopesticides and sources of enzymes, respectively. These fungi reproduce asexually by production of conidia and chlamydospores and in wild habitats by ascospores. Trichoderma species are efficient mycoparasites and prolific producers of secondary metabolites, some of which have clinical importance. However, the ecological or biological significance of this metabolite diversity is sorely lagging behind the chemical significance. Many strains produce elicitors and induce resistance in plants through colonization of roots. Seven species have now been sequenced. Comparison of a primarily saprophytic species with two mycoparasitic species has provided striking contrasts and has established that mycoparasitism is an ancestral trait of this genus. Among the interesting outcomes of genome comparison is the discovery of a vast repertoire of secondary metabolism pathways and of numerous small cysteine-rich secreted proteins. Genomics has also facilitated investigation of sexual crossing in Trichoderma reesei, suggesting the possibility of strain improvement through hybridization.</abstract><cop>Palo Alto, CA</cop><pub>Annual Reviews</pub><pmid>23915132</pmid><doi>10.1146/annurev-phyto-082712-102353</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0066-4286 |
ispartof | Annual review of phytopathology, 2013-01, Vol.51 (1), p.105-129 |
issn | 0066-4286 1545-2107 |
language | eng |
recordid | cdi_proquest_miscellaneous_1448215227 |
source | Annual Reviews Complete A-Z List; MEDLINE |
subjects | Agriculture Biological and medical sciences Biological Control Agents Biological Evolution Fundamental and applied biological sciences. Psychology Fungal plant pathogens Fungal Proteins - genetics Genome, Fungal - genetics Genomics Host-Pathogen Interactions Hypocrea jecorina Multigene Family Phytopathology. Animal pests. Plant and forest protection Plants - microbiology Trichoderma - cytology Trichoderma - genetics Trichoderma - growth & development Trichoderma - physiology |
title | Trichoderma Research in the Genome Era |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trichoderma%20Research%20in%20the%20Genome%20Era&rft.jtitle=Annual%20review%20of%20phytopathology&rft.au=MUKHERJEE,%20Prasun%20K&rft.date=2013-01-01&rft.volume=51&rft.issue=1&rft.spage=105&rft.epage=129&rft.pages=105-129&rft.issn=0066-4286&rft.eissn=1545-2107&rft.coden=APPYAG&rft_id=info:doi/10.1146/annurev-phyto-082712-102353&rft_dat=%3Cproquest_cross%3E1418362527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418362527&rft_id=info:pmid/23915132&rfr_iscdi=true |