Capillary condensation of water vapor within a particulate bed

For situations in which capillary condensation of water occurs (e.g., within porous media), the thermodynamics can usually be studied by means of the Laplace and Young equations and a compressibility equation. We show here that the compressibility equation for the liquid does not reflect the criteri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 1986-03, Vol.32 (3), p.501-504
Hauptverfasser: Shukla, P. N., Wilkinson, B. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 504
container_issue 3
container_start_page 501
container_title AIChE journal
container_volume 32
creator Shukla, P. N.
Wilkinson, B. W.
description For situations in which capillary condensation of water occurs (e.g., within porous media), the thermodynamics can usually be studied by means of the Laplace and Young equations and a compressibility equation. We show here that the compressibility equation for the liquid does not reflect the criteria of equal gas and liquid phase potential changes at equilibrium, for departures from a specified reference state. Carman (1953) concluded that the capillary condensate can exist in a state of tension for large vapor‐liquid pressure differentials and may exhibit physical properties that differ substantially from normal values. The familiar Kelvin equation is used to calculate the capillary curvature and is derived from the general Laplace and Young relationship. Melrose (1966) has obtained this relationship by matching the coefficients of the internal free energy and hydrostatic balances of the system shown in Figure 1.
doi_str_mv 10.1002/aic.690320318
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_14479966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>14479966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4028-d7c6e4437b57c312948be8f9f0782cef0f021176c58fcd6648b071acd001edde3</originalsourceid><addsrcrecordid>eNqFkEFLAzEQhYMoWKtH73sQb1snyW6SvQiy2FooClLxGNJsgtHt7ppsrf33prQUTzqXMJlvZt48hC4xjDAAuVFOj1gBlADF4ggNcJ7xNC8gP0YDAMBp_MCn6CyE95gRLsgA3Zaqc3Wt_CbRbVOZJqjetU3S2mSteuOTL9W1Plm7_s01iUo65XunV3WsJQtTnaMTq-pgLvbvEL2M7-flQzp7mkzLu1mqMyAirbhmJssoX-RcU0yKTCyMsIWFKEIbCxYIxpzpXFhdMRbLwLHSVdRpqsrQIbreze18-7kyoZdLF7SJwhvTroLEWcaLgrEIpjtQ-zYEb6zsvFvG8yQGuXVJRpfkwaXIX-0Hq6BVbb1qtAuHJoEhjxf8i0GxjYjxHbZ2tdn8vVreTcvfOva6XejN96FT-Q_JOOW5fH2cyPmMkmciqBzTHz72koE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14479966</pqid></control><display><type>article</type><title>Capillary condensation of water vapor within a particulate bed</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Shukla, P. N. ; Wilkinson, B. W.</creator><creatorcontrib>Shukla, P. N. ; Wilkinson, B. W.</creatorcontrib><description>For situations in which capillary condensation of water occurs (e.g., within porous media), the thermodynamics can usually be studied by means of the Laplace and Young equations and a compressibility equation. We show here that the compressibility equation for the liquid does not reflect the criteria of equal gas and liquid phase potential changes at equilibrium, for departures from a specified reference state. Carman (1953) concluded that the capillary condensate can exist in a state of tension for large vapor‐liquid pressure differentials and may exhibit physical properties that differ substantially from normal values. The familiar Kelvin equation is used to calculate the capillary curvature and is derived from the general Laplace and Young relationship. Melrose (1966) has obtained this relationship by matching the coefficients of the internal free energy and hydrostatic balances of the system shown in Figure 1.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690320318</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>Applied sciences ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Nonhomogeneous flows ; Other techniques and industries ; Physics</subject><ispartof>AIChE journal, 1986-03, Vol.32 (3), p.501-504</ispartof><rights>Copyright © 1986 American Institute of Chemical Engineers</rights><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4028-d7c6e4437b57c312948be8f9f0782cef0f021176c58fcd6648b071acd001edde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690320318$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690320318$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8099999$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8105402$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shukla, P. N.</creatorcontrib><creatorcontrib>Wilkinson, B. W.</creatorcontrib><title>Capillary condensation of water vapor within a particulate bed</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>For situations in which capillary condensation of water occurs (e.g., within porous media), the thermodynamics can usually be studied by means of the Laplace and Young equations and a compressibility equation. We show here that the compressibility equation for the liquid does not reflect the criteria of equal gas and liquid phase potential changes at equilibrium, for departures from a specified reference state. Carman (1953) concluded that the capillary condensate can exist in a state of tension for large vapor‐liquid pressure differentials and may exhibit physical properties that differ substantially from normal values. The familiar Kelvin equation is used to calculate the capillary curvature and is derived from the general Laplace and Young relationship. Melrose (1966) has obtained this relationship by matching the coefficients of the internal free energy and hydrostatic balances of the system shown in Figure 1.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Nonhomogeneous flows</subject><subject>Other techniques and industries</subject><subject>Physics</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLAzEQhYMoWKtH73sQb1snyW6SvQiy2FooClLxGNJsgtHt7ppsrf33prQUTzqXMJlvZt48hC4xjDAAuVFOj1gBlADF4ggNcJ7xNC8gP0YDAMBp_MCn6CyE95gRLsgA3Zaqc3Wt_CbRbVOZJqjetU3S2mSteuOTL9W1Plm7_s01iUo65XunV3WsJQtTnaMTq-pgLvbvEL2M7-flQzp7mkzLu1mqMyAirbhmJssoX-RcU0yKTCyMsIWFKEIbCxYIxpzpXFhdMRbLwLHSVdRpqsrQIbreze18-7kyoZdLF7SJwhvTroLEWcaLgrEIpjtQ-zYEb6zsvFvG8yQGuXVJRpfkwaXIX-0Hq6BVbb1qtAuHJoEhjxf8i0GxjYjxHbZ2tdn8vVreTcvfOva6XejN96FT-Q_JOOW5fH2cyPmMkmciqBzTHz72koE</recordid><startdate>198603</startdate><enddate>198603</enddate><creator>Shukla, P. N.</creator><creator>Wilkinson, B. W.</creator><general>American Institute of Chemical Engineers</general><general>Wiley Subscription Services</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TV</scope><scope>C1K</scope></search><sort><creationdate>198603</creationdate><title>Capillary condensation of water vapor within a particulate bed</title><author>Shukla, P. N. ; Wilkinson, B. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4028-d7c6e4437b57c312948be8f9f0782cef0f021176c58fcd6648b071acd001edde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Nonhomogeneous flows</topic><topic>Other techniques and industries</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shukla, P. N.</creatorcontrib><creatorcontrib>Wilkinson, B. W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shukla, P. N.</au><au>Wilkinson, B. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capillary condensation of water vapor within a particulate bed</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>1986-03</date><risdate>1986</risdate><volume>32</volume><issue>3</issue><spage>501</spage><epage>504</epage><pages>501-504</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>For situations in which capillary condensation of water occurs (e.g., within porous media), the thermodynamics can usually be studied by means of the Laplace and Young equations and a compressibility equation. We show here that the compressibility equation for the liquid does not reflect the criteria of equal gas and liquid phase potential changes at equilibrium, for departures from a specified reference state. Carman (1953) concluded that the capillary condensate can exist in a state of tension for large vapor‐liquid pressure differentials and may exhibit physical properties that differ substantially from normal values. The familiar Kelvin equation is used to calculate the capillary curvature and is derived from the general Laplace and Young relationship. Melrose (1966) has obtained this relationship by matching the coefficients of the internal free energy and hydrostatic balances of the system shown in Figure 1.</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.690320318</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 1986-03, Vol.32 (3), p.501-504
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_14479966
source Wiley Online Library - AutoHoldings Journals
subjects Applied sciences
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Nonhomogeneous flows
Other techniques and industries
Physics
title Capillary condensation of water vapor within a particulate bed
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capillary%20condensation%20of%20water%20vapor%20within%20a%20particulate%20bed&rft.jtitle=AIChE%20journal&rft.au=Shukla,%20P.%20N.&rft.date=1986-03&rft.volume=32&rft.issue=3&rft.spage=501&rft.epage=504&rft.pages=501-504&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.690320318&rft_dat=%3Cproquest_cross%3E14479966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14479966&rft_id=info:pmid/&rfr_iscdi=true