Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope

Summary The starch‐statolith hypothesis proposes that starch‐filled amyloplasts act as statoliths in plant gravisensing, moving in response to the gravity vector and signaling its direction. However, recent studies suggest that amyloplasts show continuous, complex movements in Arabidopsis shoots, co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2013-11, Vol.76 (4), p.648-660
Hauptverfasser: Toyota, Masatsugu, Ikeda, Norifumi, Sawai‐Toyota, Satoe, Kato, Takehide, Gilroy, Simon, Tasaka, Masao, Morita, Miyo Terao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 660
container_issue 4
container_start_page 648
container_title The Plant journal : for cell and molecular biology
container_volume 76
creator Toyota, Masatsugu
Ikeda, Norifumi
Sawai‐Toyota, Satoe
Kato, Takehide
Gilroy, Simon
Tasaka, Masao
Morita, Miyo Terao
description Summary The starch‐statolith hypothesis proposes that starch‐filled amyloplasts act as statoliths in plant gravisensing, moving in response to the gravity vector and signaling its direction. However, recent studies suggest that amyloplasts show continuous, complex movements in Arabidopsis shoots, contradicting the idea of a so‐called ‘static’ or ‘settled’ statolith. Here, we show that amyloplast movement underlies shoot gravisensing by using a custom‐designed centrifuge microscope in combination with analysis of gravitropic mutants. The centrifuge microscope revealed that sedimentary movements of amyloplasts under hypergravity conditions are linearly correlated with gravitropic curvature in wild‐type stems. We next analyzed the hypergravity response in the shoot gravitropism 2 (sgr2) mutant, which exhibits neither a shoot gravitropic response nor amyloplast sedimentation at 1 g. sgr2 mutants were able to sense and respond to gravity under 30 g conditions, during which the amyloplasts sedimented. These findings are consistent with amyloplast redistribution resulting from gravity‐driven movements triggering shoot gravisensing. To further support this idea, we examined two additional gravitropic mutants, phosphoglucomutase (pgm) and sgr9, which show abnormal amyloplast distribution and reduced gravitropism at 1 g. We found that the correlation between hypergravity‐induced amyloplast sedimentation and gravitropic curvature of these mutants was identical to that of wild‐type plants. These observations suggest that Arabidopsis shoots have a gravisensing mechanism that linearly converts the number of amyloplasts that settle to the ‘bottom’ of the cell into gravitropic signals. Further, the restoration of the gravitropic response by hypergravity in the gravitropic mutants that we tested indicates that these lines probably have a functional gravisensing mechanism that is not triggered at 1 g.
doi_str_mv 10.1111/tpj.12324
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1447108423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110474921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4194-d2e73c7b544e9cda34828b80a19715129be32c9a0ccf03795f81fc99472eb7cc3</originalsourceid><addsrcrecordid>eNp10btu2zAUBmCiaBA7boa-QEGgSzIo4U2mOBpGLg0CJEMKdBMo6silIYkqj-TCbx-6TjsUCJfD4cMP8vyEfObsiqdzPQ7bKy6kUB_InMtlnkkuf3wkc2aWLNOKixk5Q9wyxrVcqlMyE4oxxZmak7jq9m0YWosjrT2mi4MO-pF6pD04QLRxT5sQ6SbanUfo0fcb6nu6irbydRgwSfwZwojUIo2wA9tCTas9tdSlpOibaQO08y4GdGGAT-SksS3C-dtckO-3Ny_r--zx6e7bevWYOcWNymoBWjpd5UqBcbWVqhBFVTDLjeY5F6YCKZyxzLmGSW3ypuCNM0ZpAZV2Ti7IxTF3iOHXBDiWnUcHbWt7CBOWXCnNWaGETPTrf3Qbptin1x1Uro3WrEjq8qgOP8EITTlE36X9lJyVhyLKVET5p4hkv7wlTlUH9T_5d_MJXB_Bb9_C_v2k8uX54Rj5Ch1Gk2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1445797708</pqid></control><display><type>article</type><title>Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope</title><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Toyota, Masatsugu ; Ikeda, Norifumi ; Sawai‐Toyota, Satoe ; Kato, Takehide ; Gilroy, Simon ; Tasaka, Masao ; Morita, Miyo Terao</creator><creatorcontrib>Toyota, Masatsugu ; Ikeda, Norifumi ; Sawai‐Toyota, Satoe ; Kato, Takehide ; Gilroy, Simon ; Tasaka, Masao ; Morita, Miyo Terao</creatorcontrib><description>Summary The starch‐statolith hypothesis proposes that starch‐filled amyloplasts act as statoliths in plant gravisensing, moving in response to the gravity vector and signaling its direction. However, recent studies suggest that amyloplasts show continuous, complex movements in Arabidopsis shoots, contradicting the idea of a so‐called ‘static’ or ‘settled’ statolith. Here, we show that amyloplast movement underlies shoot gravisensing by using a custom‐designed centrifuge microscope in combination with analysis of gravitropic mutants. The centrifuge microscope revealed that sedimentary movements of amyloplasts under hypergravity conditions are linearly correlated with gravitropic curvature in wild‐type stems. We next analyzed the hypergravity response in the shoot gravitropism 2 (sgr2) mutant, which exhibits neither a shoot gravitropic response nor amyloplast sedimentation at 1 g. sgr2 mutants were able to sense and respond to gravity under 30 g conditions, during which the amyloplasts sedimented. These findings are consistent with amyloplast redistribution resulting from gravity‐driven movements triggering shoot gravisensing. To further support this idea, we examined two additional gravitropic mutants, phosphoglucomutase (pgm) and sgr9, which show abnormal amyloplast distribution and reduced gravitropism at 1 g. We found that the correlation between hypergravity‐induced amyloplast sedimentation and gravitropic curvature of these mutants was identical to that of wild‐type plants. These observations suggest that Arabidopsis shoots have a gravisensing mechanism that linearly converts the number of amyloplasts that settle to the ‘bottom’ of the cell into gravitropic signals. Further, the restoration of the gravitropic response by hypergravity in the gravitropic mutants that we tested indicates that these lines probably have a functional gravisensing mechanism that is not triggered at 1 g.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.12324</identifier><identifier>PMID: 24004104</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>amyloplast ; Arabidopsis ; Arabidopsis - chemistry ; Arabidopsis - genetics ; Arabidopsis - physiology ; Arabidopsis Proteins - chemistry ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - physiology ; Biophysics ; Cells ; Centrifugation ; centrifuge microscope ; gravisensing ; Gravitropism - genetics ; Hypergravity ; Microscopy ; Microscopy, Polarization ; Mutation ; Phosphoglucomutase - chemistry ; Phosphoglucomutase - genetics ; Phosphoglucomutase - physiology ; Phospholipases - chemistry ; Phospholipases - genetics ; Phospholipases - physiology ; Plant biology ; Plant Shoots - chemistry ; Plant Shoots - genetics ; Plant Shoots - physiology ; Plastids - chemistry ; Plastids - genetics ; Plastids - physiology ; RING Finger Domains - genetics ; RING Finger Domains - physiology ; starch‐statolith hypothesis ; Ubiquitin-Protein Ligases - chemistry ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - physiology</subject><ispartof>The Plant journal : for cell and molecular biology, 2013-11, Vol.76 (4), p.648-660</ispartof><rights>2013 The Authors The Plant Journal © 2013 John Wiley &amp; Sons Ltd</rights><rights>2013 The Authors The Plant Journal © 2013 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2013 John Wiley &amp; Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4194-d2e73c7b544e9cda34828b80a19715129be32c9a0ccf03795f81fc99472eb7cc3</citedby><cites>FETCH-LOGICAL-c4194-d2e73c7b544e9cda34828b80a19715129be32c9a0ccf03795f81fc99472eb7cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.12324$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.12324$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24004104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Toyota, Masatsugu</creatorcontrib><creatorcontrib>Ikeda, Norifumi</creatorcontrib><creatorcontrib>Sawai‐Toyota, Satoe</creatorcontrib><creatorcontrib>Kato, Takehide</creatorcontrib><creatorcontrib>Gilroy, Simon</creatorcontrib><creatorcontrib>Tasaka, Masao</creatorcontrib><creatorcontrib>Morita, Miyo Terao</creatorcontrib><title>Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary The starch‐statolith hypothesis proposes that starch‐filled amyloplasts act as statoliths in plant gravisensing, moving in response to the gravity vector and signaling its direction. However, recent studies suggest that amyloplasts show continuous, complex movements in Arabidopsis shoots, contradicting the idea of a so‐called ‘static’ or ‘settled’ statolith. Here, we show that amyloplast movement underlies shoot gravisensing by using a custom‐designed centrifuge microscope in combination with analysis of gravitropic mutants. The centrifuge microscope revealed that sedimentary movements of amyloplasts under hypergravity conditions are linearly correlated with gravitropic curvature in wild‐type stems. We next analyzed the hypergravity response in the shoot gravitropism 2 (sgr2) mutant, which exhibits neither a shoot gravitropic response nor amyloplast sedimentation at 1 g. sgr2 mutants were able to sense and respond to gravity under 30 g conditions, during which the amyloplasts sedimented. These findings are consistent with amyloplast redistribution resulting from gravity‐driven movements triggering shoot gravisensing. To further support this idea, we examined two additional gravitropic mutants, phosphoglucomutase (pgm) and sgr9, which show abnormal amyloplast distribution and reduced gravitropism at 1 g. We found that the correlation between hypergravity‐induced amyloplast sedimentation and gravitropic curvature of these mutants was identical to that of wild‐type plants. These observations suggest that Arabidopsis shoots have a gravisensing mechanism that linearly converts the number of amyloplasts that settle to the ‘bottom’ of the cell into gravitropic signals. Further, the restoration of the gravitropic response by hypergravity in the gravitropic mutants that we tested indicates that these lines probably have a functional gravisensing mechanism that is not triggered at 1 g.</description><subject>amyloplast</subject><subject>Arabidopsis</subject><subject>Arabidopsis - chemistry</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - physiology</subject><subject>Arabidopsis Proteins - chemistry</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - physiology</subject><subject>Biophysics</subject><subject>Cells</subject><subject>Centrifugation</subject><subject>centrifuge microscope</subject><subject>gravisensing</subject><subject>Gravitropism - genetics</subject><subject>Hypergravity</subject><subject>Microscopy</subject><subject>Microscopy, Polarization</subject><subject>Mutation</subject><subject>Phosphoglucomutase - chemistry</subject><subject>Phosphoglucomutase - genetics</subject><subject>Phosphoglucomutase - physiology</subject><subject>Phospholipases - chemistry</subject><subject>Phospholipases - genetics</subject><subject>Phospholipases - physiology</subject><subject>Plant biology</subject><subject>Plant Shoots - chemistry</subject><subject>Plant Shoots - genetics</subject><subject>Plant Shoots - physiology</subject><subject>Plastids - chemistry</subject><subject>Plastids - genetics</subject><subject>Plastids - physiology</subject><subject>RING Finger Domains - genetics</subject><subject>RING Finger Domains - physiology</subject><subject>starch‐statolith hypothesis</subject><subject>Ubiquitin-Protein Ligases - chemistry</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - physiology</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10btu2zAUBmCiaBA7boa-QEGgSzIo4U2mOBpGLg0CJEMKdBMo6silIYkqj-TCbx-6TjsUCJfD4cMP8vyEfObsiqdzPQ7bKy6kUB_InMtlnkkuf3wkc2aWLNOKixk5Q9wyxrVcqlMyE4oxxZmak7jq9m0YWosjrT2mi4MO-pF6pD04QLRxT5sQ6SbanUfo0fcb6nu6irbydRgwSfwZwojUIo2wA9tCTas9tdSlpOibaQO08y4GdGGAT-SksS3C-dtckO-3Ny_r--zx6e7bevWYOcWNymoBWjpd5UqBcbWVqhBFVTDLjeY5F6YCKZyxzLmGSW3ypuCNM0ZpAZV2Ti7IxTF3iOHXBDiWnUcHbWt7CBOWXCnNWaGETPTrf3Qbptin1x1Uro3WrEjq8qgOP8EITTlE36X9lJyVhyLKVET5p4hkv7wlTlUH9T_5d_MJXB_Bb9_C_v2k8uX54Rj5Ch1Gk2A</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Toyota, Masatsugu</creator><creator>Ikeda, Norifumi</creator><creator>Sawai‐Toyota, Satoe</creator><creator>Kato, Takehide</creator><creator>Gilroy, Simon</creator><creator>Tasaka, Masao</creator><creator>Morita, Miyo Terao</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201311</creationdate><title>Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope</title><author>Toyota, Masatsugu ; Ikeda, Norifumi ; Sawai‐Toyota, Satoe ; Kato, Takehide ; Gilroy, Simon ; Tasaka, Masao ; Morita, Miyo Terao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4194-d2e73c7b544e9cda34828b80a19715129be32c9a0ccf03795f81fc99472eb7cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>amyloplast</topic><topic>Arabidopsis</topic><topic>Arabidopsis - chemistry</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - physiology</topic><topic>Arabidopsis Proteins - chemistry</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - physiology</topic><topic>Biophysics</topic><topic>Cells</topic><topic>Centrifugation</topic><topic>centrifuge microscope</topic><topic>gravisensing</topic><topic>Gravitropism - genetics</topic><topic>Hypergravity</topic><topic>Microscopy</topic><topic>Microscopy, Polarization</topic><topic>Mutation</topic><topic>Phosphoglucomutase - chemistry</topic><topic>Phosphoglucomutase - genetics</topic><topic>Phosphoglucomutase - physiology</topic><topic>Phospholipases - chemistry</topic><topic>Phospholipases - genetics</topic><topic>Phospholipases - physiology</topic><topic>Plant biology</topic><topic>Plant Shoots - chemistry</topic><topic>Plant Shoots - genetics</topic><topic>Plant Shoots - physiology</topic><topic>Plastids - chemistry</topic><topic>Plastids - genetics</topic><topic>Plastids - physiology</topic><topic>RING Finger Domains - genetics</topic><topic>RING Finger Domains - physiology</topic><topic>starch‐statolith hypothesis</topic><topic>Ubiquitin-Protein Ligases - chemistry</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toyota, Masatsugu</creatorcontrib><creatorcontrib>Ikeda, Norifumi</creatorcontrib><creatorcontrib>Sawai‐Toyota, Satoe</creatorcontrib><creatorcontrib>Kato, Takehide</creatorcontrib><creatorcontrib>Gilroy, Simon</creatorcontrib><creatorcontrib>Tasaka, Masao</creatorcontrib><creatorcontrib>Morita, Miyo Terao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toyota, Masatsugu</au><au>Ikeda, Norifumi</au><au>Sawai‐Toyota, Satoe</au><au>Kato, Takehide</au><au>Gilroy, Simon</au><au>Tasaka, Masao</au><au>Morita, Miyo Terao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2013-11</date><risdate>2013</risdate><volume>76</volume><issue>4</issue><spage>648</spage><epage>660</epage><pages>648-660</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary The starch‐statolith hypothesis proposes that starch‐filled amyloplasts act as statoliths in plant gravisensing, moving in response to the gravity vector and signaling its direction. However, recent studies suggest that amyloplasts show continuous, complex movements in Arabidopsis shoots, contradicting the idea of a so‐called ‘static’ or ‘settled’ statolith. Here, we show that amyloplast movement underlies shoot gravisensing by using a custom‐designed centrifuge microscope in combination with analysis of gravitropic mutants. The centrifuge microscope revealed that sedimentary movements of amyloplasts under hypergravity conditions are linearly correlated with gravitropic curvature in wild‐type stems. We next analyzed the hypergravity response in the shoot gravitropism 2 (sgr2) mutant, which exhibits neither a shoot gravitropic response nor amyloplast sedimentation at 1 g. sgr2 mutants were able to sense and respond to gravity under 30 g conditions, during which the amyloplasts sedimented. These findings are consistent with amyloplast redistribution resulting from gravity‐driven movements triggering shoot gravisensing. To further support this idea, we examined two additional gravitropic mutants, phosphoglucomutase (pgm) and sgr9, which show abnormal amyloplast distribution and reduced gravitropism at 1 g. We found that the correlation between hypergravity‐induced amyloplast sedimentation and gravitropic curvature of these mutants was identical to that of wild‐type plants. These observations suggest that Arabidopsis shoots have a gravisensing mechanism that linearly converts the number of amyloplasts that settle to the ‘bottom’ of the cell into gravitropic signals. Further, the restoration of the gravitropic response by hypergravity in the gravitropic mutants that we tested indicates that these lines probably have a functional gravisensing mechanism that is not triggered at 1 g.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>24004104</pmid><doi>10.1111/tpj.12324</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2013-11, Vol.76 (4), p.648-660
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_1447108423
source MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals
subjects amyloplast
Arabidopsis
Arabidopsis - chemistry
Arabidopsis - genetics
Arabidopsis - physiology
Arabidopsis Proteins - chemistry
Arabidopsis Proteins - genetics
Arabidopsis Proteins - physiology
Biophysics
Cells
Centrifugation
centrifuge microscope
gravisensing
Gravitropism - genetics
Hypergravity
Microscopy
Microscopy, Polarization
Mutation
Phosphoglucomutase - chemistry
Phosphoglucomutase - genetics
Phosphoglucomutase - physiology
Phospholipases - chemistry
Phospholipases - genetics
Phospholipases - physiology
Plant biology
Plant Shoots - chemistry
Plant Shoots - genetics
Plant Shoots - physiology
Plastids - chemistry
Plastids - genetics
Plastids - physiology
RING Finger Domains - genetics
RING Finger Domains - physiology
starch‐statolith hypothesis
Ubiquitin-Protein Ligases - chemistry
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - physiology
title Amyloplast displacement is necessary for gravisensing in Arabidopsis shoots as revealed by a centrifuge microscope
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amyloplast%20displacement%20is%20necessary%20for%20gravisensing%20in%20Arabidopsis%20shoots%20as%20revealed%20by%20a%20centrifuge%20microscope&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Toyota,%20Masatsugu&rft.date=2013-11&rft.volume=76&rft.issue=4&rft.spage=648&rft.epage=660&rft.pages=648-660&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.12324&rft_dat=%3Cproquest_cross%3E3110474921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1445797708&rft_id=info:pmid/24004104&rfr_iscdi=true