Complex Dynamics in an Eco-epidemiological Model
The presence of infectious diseases can dramatically change the dynamics of ecological systems. By studying an SI-type disease in the predator population of a Rosenzweig–MacArthur model, we find a wealth of complex dynamics that do not exist in the absence of the disease. Numerical solutions indicat...
Gespeichert in:
Veröffentlicht in: | Bulletin of mathematical biology 2013-11, Vol.75 (11), p.2059-2078 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2078 |
---|---|
container_issue | 11 |
container_start_page | 2059 |
container_title | Bulletin of mathematical biology |
container_volume | 75 |
creator | Bate, Andrew M. Hilker, Frank M. |
description | The presence of infectious diseases can dramatically change the dynamics of ecological systems. By studying an SI-type disease in the predator population of a Rosenzweig–MacArthur model, we find a wealth of complex dynamics that do not exist in the absence of the disease. Numerical solutions indicate the existence of saddle–node and subcritical Hopf bifurcations, turning points and branching in periodic solutions, and a period-doubling cascade into chaos. This means that there are regions of bistability, in which the disease can have both a stabilising and destabilising effect. We also find tristability, which involves an endemic torus (or limit cycle), an endemic equilibrium and a disease-free limit cycle. The endemic torus seems to disappear via a homoclinic orbit. Notably, some of these dynamics occur when the basic reproduction number is less than one, and endemic situations would not be expected at all. The multistable regimes render the eco-epidemic system very sensitive to perturbations and facilitate a number of regime shifts, some of which we find to be irreversible. |
doi_str_mv | 10.1007/s11538-013-9880-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1445915109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3106851881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-64eba6b6ee8b2f65adca08237630b99b638f18a0b43f9d1331bb167fc067639a3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMobk5_gDdS8Mab6EnSZsmlbPMDJt7odUjSdHS0TW1WcPv1ZnSKCF4FTp73PYcHoUsCtwRgehcIyZjAQBiWQgDeHaExySjFkgM9RmMASbGgKYzQWQhriBnJ5CkaxVGaCcnGCGa-biv3mcy3ja5LG5KySXSTLKzHri1zV5e-8qvS6ip58bmrztFJoavgLg7vBL0_LN5mT3j5-vg8u19imzKxwTx1RnPDnROGFjzTudUgKJtyBkZKw5koiNBgUlbInDBGjCF8WljgEZGaTdDN0Nt2_qN3YaPqMlhXVbpxvg-KpGkmSUZARvT6D7r2fdfE6_ZU5IDzLFJkoGznQ-hcodqurHW3VQTUXqcadKqoU-11ql3MXB2ae1O7_Cfx7S8CdABC_GpWrvu1-t_WL8rPfg0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444450665</pqid></control><display><type>article</type><title>Complex Dynamics in an Eco-epidemiological Model</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bate, Andrew M. ; Hilker, Frank M.</creator><creatorcontrib>Bate, Andrew M. ; Hilker, Frank M.</creatorcontrib><description>The presence of infectious diseases can dramatically change the dynamics of ecological systems. By studying an SI-type disease in the predator population of a Rosenzweig–MacArthur model, we find a wealth of complex dynamics that do not exist in the absence of the disease. Numerical solutions indicate the existence of saddle–node and subcritical Hopf bifurcations, turning points and branching in periodic solutions, and a period-doubling cascade into chaos. This means that there are regions of bistability, in which the disease can have both a stabilising and destabilising effect. We also find tristability, which involves an endemic torus (or limit cycle), an endemic equilibrium and a disease-free limit cycle. The endemic torus seems to disappear via a homoclinic orbit. Notably, some of these dynamics occur when the basic reproduction number is less than one, and endemic situations would not be expected at all. The multistable regimes render the eco-epidemic system very sensitive to perturbations and facilitate a number of regime shifts, some of which we find to be irreversible.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-013-9880-z</identifier><identifier>PMID: 24045893</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Animals ; Cell Biology ; Communicable Diseases - epidemiology ; Communicable Diseases - transmission ; Ecosystem ; Epidemiologic Factors ; Food Chain ; Humans ; Life Sciences ; Mathematical and Computational Biology ; Mathematical Concepts ; Mathematics ; Mathematics and Statistics ; Models, Biological ; Nonlinear Dynamics ; Original Article</subject><ispartof>Bulletin of mathematical biology, 2013-11, Vol.75 (11), p.2059-2078</ispartof><rights>Society for Mathematical Biology 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-64eba6b6ee8b2f65adca08237630b99b638f18a0b43f9d1331bb167fc067639a3</citedby><cites>FETCH-LOGICAL-c438t-64eba6b6ee8b2f65adca08237630b99b638f18a0b43f9d1331bb167fc067639a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-013-9880-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-013-9880-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24045893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bate, Andrew M.</creatorcontrib><creatorcontrib>Hilker, Frank M.</creatorcontrib><title>Complex Dynamics in an Eco-epidemiological Model</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>The presence of infectious diseases can dramatically change the dynamics of ecological systems. By studying an SI-type disease in the predator population of a Rosenzweig–MacArthur model, we find a wealth of complex dynamics that do not exist in the absence of the disease. Numerical solutions indicate the existence of saddle–node and subcritical Hopf bifurcations, turning points and branching in periodic solutions, and a period-doubling cascade into chaos. This means that there are regions of bistability, in which the disease can have both a stabilising and destabilising effect. We also find tristability, which involves an endemic torus (or limit cycle), an endemic equilibrium and a disease-free limit cycle. The endemic torus seems to disappear via a homoclinic orbit. Notably, some of these dynamics occur when the basic reproduction number is less than one, and endemic situations would not be expected at all. The multistable regimes render the eco-epidemic system very sensitive to perturbations and facilitate a number of regime shifts, some of which we find to be irreversible.</description><subject>Animals</subject><subject>Cell Biology</subject><subject>Communicable Diseases - epidemiology</subject><subject>Communicable Diseases - transmission</subject><subject>Ecosystem</subject><subject>Epidemiologic Factors</subject><subject>Food Chain</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Concepts</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Biological</subject><subject>Nonlinear Dynamics</subject><subject>Original Article</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kF1LwzAUhoMobk5_gDdS8Mab6EnSZsmlbPMDJt7odUjSdHS0TW1WcPv1ZnSKCF4FTp73PYcHoUsCtwRgehcIyZjAQBiWQgDeHaExySjFkgM9RmMASbGgKYzQWQhriBnJ5CkaxVGaCcnGCGa-biv3mcy3ja5LG5KySXSTLKzHri1zV5e-8qvS6ip58bmrztFJoavgLg7vBL0_LN5mT3j5-vg8u19imzKxwTx1RnPDnROGFjzTudUgKJtyBkZKw5koiNBgUlbInDBGjCF8WljgEZGaTdDN0Nt2_qN3YaPqMlhXVbpxvg-KpGkmSUZARvT6D7r2fdfE6_ZU5IDzLFJkoGznQ-hcodqurHW3VQTUXqcadKqoU-11ql3MXB2ae1O7_Cfx7S8CdABC_GpWrvu1-t_WL8rPfg0</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Bate, Andrew M.</creator><creator>Hilker, Frank M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20131101</creationdate><title>Complex Dynamics in an Eco-epidemiological Model</title><author>Bate, Andrew M. ; Hilker, Frank M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-64eba6b6ee8b2f65adca08237630b99b638f18a0b43f9d1331bb167fc067639a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Cell Biology</topic><topic>Communicable Diseases - epidemiology</topic><topic>Communicable Diseases - transmission</topic><topic>Ecosystem</topic><topic>Epidemiologic Factors</topic><topic>Food Chain</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Concepts</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Biological</topic><topic>Nonlinear Dynamics</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bate, Andrew M.</creatorcontrib><creatorcontrib>Hilker, Frank M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bate, Andrew M.</au><au>Hilker, Frank M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex Dynamics in an Eco-epidemiological Model</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>75</volume><issue>11</issue><spage>2059</spage><epage>2078</epage><pages>2059-2078</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>The presence of infectious diseases can dramatically change the dynamics of ecological systems. By studying an SI-type disease in the predator population of a Rosenzweig–MacArthur model, we find a wealth of complex dynamics that do not exist in the absence of the disease. Numerical solutions indicate the existence of saddle–node and subcritical Hopf bifurcations, turning points and branching in periodic solutions, and a period-doubling cascade into chaos. This means that there are regions of bistability, in which the disease can have both a stabilising and destabilising effect. We also find tristability, which involves an endemic torus (or limit cycle), an endemic equilibrium and a disease-free limit cycle. The endemic torus seems to disappear via a homoclinic orbit. Notably, some of these dynamics occur when the basic reproduction number is less than one, and endemic situations would not be expected at all. The multistable regimes render the eco-epidemic system very sensitive to perturbations and facilitate a number of regime shifts, some of which we find to be irreversible.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>24045893</pmid><doi>10.1007/s11538-013-9880-z</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8240 |
ispartof | Bulletin of mathematical biology, 2013-11, Vol.75 (11), p.2059-2078 |
issn | 0092-8240 1522-9602 |
language | eng |
recordid | cdi_proquest_miscellaneous_1445915109 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animals Cell Biology Communicable Diseases - epidemiology Communicable Diseases - transmission Ecosystem Epidemiologic Factors Food Chain Humans Life Sciences Mathematical and Computational Biology Mathematical Concepts Mathematics Mathematics and Statistics Models, Biological Nonlinear Dynamics Original Article |
title | Complex Dynamics in an Eco-epidemiological Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20Dynamics%20in%20an%20Eco-epidemiological%20Model&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Bate,%20Andrew%20M.&rft.date=2013-11-01&rft.volume=75&rft.issue=11&rft.spage=2059&rft.epage=2078&rft.pages=2059-2078&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-013-9880-z&rft_dat=%3Cproquest_cross%3E3106851881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1444450665&rft_id=info:pmid/24045893&rfr_iscdi=true |