Fluctuating exciton localization in giant π-conjugated spoked-wheel macrocycles

Conjugated polymers offer potential for many diverse applications, but we still lack a fundamental microscopic understanding of their electronic structure. Elementary photoexcitations (excitons) span only a few nanometres of a molecule, which itself can extend over microns, and how their behaviour i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2013-11, Vol.5 (11), p.964-970
Hauptverfasser: Aggarwal, A. Vikas, Thiessen, Alexander, Idelson, Alissa, Kalle, Daniel, Würsch, Dominik, Stangl, Thomas, Steiner, Florian, Jester, Stefan-S., Vogelsang, Jan, Höger, Sigurd, Lupton, John M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 970
container_issue 11
container_start_page 964
container_title Nature chemistry
container_volume 5
creator Aggarwal, A. Vikas
Thiessen, Alexander
Idelson, Alissa
Kalle, Daniel
Würsch, Dominik
Stangl, Thomas
Steiner, Florian
Jester, Stefan-S.
Vogelsang, Jan
Höger, Sigurd
Lupton, John M.
description Conjugated polymers offer potential for many diverse applications, but we still lack a fundamental microscopic understanding of their electronic structure. Elementary photoexcitations (excitons) span only a few nanometres of a molecule, which itself can extend over microns, and how their behaviour is affected by molecular dimensions is not immediately obvious. For example, where is the exciton formed within a conjugated segment and is it always situated on the same repeat units? Here, we introduce structurally rigid molecular spoked wheels, 6 nm in diameter, as a model of extended π conjugation. Single-molecule fluorescence reveals random exciton localization, which leads to temporally varying emission polarization. Initially, this random localization arises after every photon absorption event because of temperature-independent spontaneous symmetry breaking. These fast fluctuations are slowed to millisecond timescales after prolonged illumination. Intramolecular heterogeneity is revealed in cryogenic spectroscopy by jumps in transition energy, but emission polarization can also switch without a spectral jump occurring, which implies long-range homogeneity in the local dielectric environment. A deficiency in our molecular-level understanding of the electronic structure of conjugated polymers hinders their potential use in electronic applications. Shape-persistent highly ordered ring structures have been used to mimic conjugated polymers and have now been studied using single-molecule spectroscopy. The fundamentally non-deterministic nature of excitation energy localisation in π -conjugated macromolecules has been demonstrated.
doi_str_mv 10.1038/nchem.1758
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1445912618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1445912618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-9421190496a3c830af89af0ec57de5f7404d356f5e6b6df6bfdb55b77fde0e443</originalsourceid><addsrcrecordid>eNptkL1OwzAUhS0EoqWw8AAoIwIF7PgnyYgqCkiVYIA5cuzrNiWxS5wIysQb8kq4tHRiOvfn09G9B6FTgq8Iptm1VXNorkjKsz00DMJjRlm-v6spHqAj7xcYC06JOESDhBFOaSqG6GlS96rrZVfZWQQfquqcjWqnZF19hmFoKhvNKmm76PsrVs4u-pnsQEd-6V5Bx-9zgDpqpGqdWqka_DE6MLL2cLLVEXqZ3D6P7-Pp493D-GYaK5rQLs5ZQkiOWS4kVRnF0mS5NBgUTzVwkzLMNOXCcBCl0EaURpecl2lqNGBgjI7Q-cZ32bq3HnxXNJVXUNfSgut9QRjjOUkEyQJ6sUHDkd63YIplWzWyXRUEF-sEi98Ei3WCAT7b-vZlA3qH_kUWgMsN4MPKzqAtFq5vbfj1P7sfRH19Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1445912618</pqid></control><display><type>article</type><title>Fluctuating exciton localization in giant π-conjugated spoked-wheel macrocycles</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Aggarwal, A. Vikas ; Thiessen, Alexander ; Idelson, Alissa ; Kalle, Daniel ; Würsch, Dominik ; Stangl, Thomas ; Steiner, Florian ; Jester, Stefan-S. ; Vogelsang, Jan ; Höger, Sigurd ; Lupton, John M.</creator><creatorcontrib>Aggarwal, A. Vikas ; Thiessen, Alexander ; Idelson, Alissa ; Kalle, Daniel ; Würsch, Dominik ; Stangl, Thomas ; Steiner, Florian ; Jester, Stefan-S. ; Vogelsang, Jan ; Höger, Sigurd ; Lupton, John M.</creatorcontrib><description>Conjugated polymers offer potential for many diverse applications, but we still lack a fundamental microscopic understanding of their electronic structure. Elementary photoexcitations (excitons) span only a few nanometres of a molecule, which itself can extend over microns, and how their behaviour is affected by molecular dimensions is not immediately obvious. For example, where is the exciton formed within a conjugated segment and is it always situated on the same repeat units? Here, we introduce structurally rigid molecular spoked wheels, 6 nm in diameter, as a model of extended π conjugation. Single-molecule fluorescence reveals random exciton localization, which leads to temporally varying emission polarization. Initially, this random localization arises after every photon absorption event because of temperature-independent spontaneous symmetry breaking. These fast fluctuations are slowed to millisecond timescales after prolonged illumination. Intramolecular heterogeneity is revealed in cryogenic spectroscopy by jumps in transition energy, but emission polarization can also switch without a spectral jump occurring, which implies long-range homogeneity in the local dielectric environment. A deficiency in our molecular-level understanding of the electronic structure of conjugated polymers hinders their potential use in electronic applications. Shape-persistent highly ordered ring structures have been used to mimic conjugated polymers and have now been studied using single-molecule spectroscopy. The fundamentally non-deterministic nature of excitation energy localisation in π -conjugated macromolecules has been demonstrated.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.1758</identifier><identifier>PMID: 24153376</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/440/527/1819 ; 639/925/357/995 ; Analytical Chemistry ; Biochemistry ; Chemistry ; Chemistry/Food Science ; Fluorescence Resonance Energy Transfer ; Inorganic Chemistry ; Macrocyclic Compounds - chemistry ; Models, Molecular ; Molecular Structure ; Organic Chemistry ; Physical Chemistry ; Polymers - chemistry</subject><ispartof>Nature chemistry, 2013-11, Vol.5 (11), p.964-970</ispartof><rights>Springer Nature Limited 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-9421190496a3c830af89af0ec57de5f7404d356f5e6b6df6bfdb55b77fde0e443</citedby><cites>FETCH-LOGICAL-c323t-9421190496a3c830af89af0ec57de5f7404d356f5e6b6df6bfdb55b77fde0e443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchem.1758$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchem.1758$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24153376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aggarwal, A. Vikas</creatorcontrib><creatorcontrib>Thiessen, Alexander</creatorcontrib><creatorcontrib>Idelson, Alissa</creatorcontrib><creatorcontrib>Kalle, Daniel</creatorcontrib><creatorcontrib>Würsch, Dominik</creatorcontrib><creatorcontrib>Stangl, Thomas</creatorcontrib><creatorcontrib>Steiner, Florian</creatorcontrib><creatorcontrib>Jester, Stefan-S.</creatorcontrib><creatorcontrib>Vogelsang, Jan</creatorcontrib><creatorcontrib>Höger, Sigurd</creatorcontrib><creatorcontrib>Lupton, John M.</creatorcontrib><title>Fluctuating exciton localization in giant π-conjugated spoked-wheel macrocycles</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>Conjugated polymers offer potential for many diverse applications, but we still lack a fundamental microscopic understanding of their electronic structure. Elementary photoexcitations (excitons) span only a few nanometres of a molecule, which itself can extend over microns, and how their behaviour is affected by molecular dimensions is not immediately obvious. For example, where is the exciton formed within a conjugated segment and is it always situated on the same repeat units? Here, we introduce structurally rigid molecular spoked wheels, 6 nm in diameter, as a model of extended π conjugation. Single-molecule fluorescence reveals random exciton localization, which leads to temporally varying emission polarization. Initially, this random localization arises after every photon absorption event because of temperature-independent spontaneous symmetry breaking. These fast fluctuations are slowed to millisecond timescales after prolonged illumination. Intramolecular heterogeneity is revealed in cryogenic spectroscopy by jumps in transition energy, but emission polarization can also switch without a spectral jump occurring, which implies long-range homogeneity in the local dielectric environment. A deficiency in our molecular-level understanding of the electronic structure of conjugated polymers hinders their potential use in electronic applications. Shape-persistent highly ordered ring structures have been used to mimic conjugated polymers and have now been studied using single-molecule spectroscopy. The fundamentally non-deterministic nature of excitation energy localisation in π -conjugated macromolecules has been demonstrated.</description><subject>639/638/440/527/1819</subject><subject>639/925/357/995</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Fluorescence Resonance Energy Transfer</subject><subject>Inorganic Chemistry</subject><subject>Macrocyclic Compounds - chemistry</subject><subject>Models, Molecular</subject><subject>Molecular Structure</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Polymers - chemistry</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkL1OwzAUhS0EoqWw8AAoIwIF7PgnyYgqCkiVYIA5cuzrNiWxS5wIysQb8kq4tHRiOvfn09G9B6FTgq8Iptm1VXNorkjKsz00DMJjRlm-v6spHqAj7xcYC06JOESDhBFOaSqG6GlS96rrZVfZWQQfquqcjWqnZF19hmFoKhvNKmm76PsrVs4u-pnsQEd-6V5Bx-9zgDpqpGqdWqka_DE6MLL2cLLVEXqZ3D6P7-Pp493D-GYaK5rQLs5ZQkiOWS4kVRnF0mS5NBgUTzVwkzLMNOXCcBCl0EaURpecl2lqNGBgjI7Q-cZ32bq3HnxXNJVXUNfSgut9QRjjOUkEyQJ6sUHDkd63YIplWzWyXRUEF-sEi98Ei3WCAT7b-vZlA3qH_kUWgMsN4MPKzqAtFq5vbfj1P7sfRH19Ow</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Aggarwal, A. Vikas</creator><creator>Thiessen, Alexander</creator><creator>Idelson, Alissa</creator><creator>Kalle, Daniel</creator><creator>Würsch, Dominik</creator><creator>Stangl, Thomas</creator><creator>Steiner, Florian</creator><creator>Jester, Stefan-S.</creator><creator>Vogelsang, Jan</creator><creator>Höger, Sigurd</creator><creator>Lupton, John M.</creator><general>Nature Publishing Group UK</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20131101</creationdate><title>Fluctuating exciton localization in giant π-conjugated spoked-wheel macrocycles</title><author>Aggarwal, A. Vikas ; Thiessen, Alexander ; Idelson, Alissa ; Kalle, Daniel ; Würsch, Dominik ; Stangl, Thomas ; Steiner, Florian ; Jester, Stefan-S. ; Vogelsang, Jan ; Höger, Sigurd ; Lupton, John M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-9421190496a3c830af89af0ec57de5f7404d356f5e6b6df6bfdb55b77fde0e443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>639/638/440/527/1819</topic><topic>639/925/357/995</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Fluorescence Resonance Energy Transfer</topic><topic>Inorganic Chemistry</topic><topic>Macrocyclic Compounds - chemistry</topic><topic>Models, Molecular</topic><topic>Molecular Structure</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Polymers - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aggarwal, A. Vikas</creatorcontrib><creatorcontrib>Thiessen, Alexander</creatorcontrib><creatorcontrib>Idelson, Alissa</creatorcontrib><creatorcontrib>Kalle, Daniel</creatorcontrib><creatorcontrib>Würsch, Dominik</creatorcontrib><creatorcontrib>Stangl, Thomas</creatorcontrib><creatorcontrib>Steiner, Florian</creatorcontrib><creatorcontrib>Jester, Stefan-S.</creatorcontrib><creatorcontrib>Vogelsang, Jan</creatorcontrib><creatorcontrib>Höger, Sigurd</creatorcontrib><creatorcontrib>Lupton, John M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aggarwal, A. Vikas</au><au>Thiessen, Alexander</au><au>Idelson, Alissa</au><au>Kalle, Daniel</au><au>Würsch, Dominik</au><au>Stangl, Thomas</au><au>Steiner, Florian</au><au>Jester, Stefan-S.</au><au>Vogelsang, Jan</au><au>Höger, Sigurd</au><au>Lupton, John M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluctuating exciton localization in giant π-conjugated spoked-wheel macrocycles</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>5</volume><issue>11</issue><spage>964</spage><epage>970</epage><pages>964-970</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Conjugated polymers offer potential for many diverse applications, but we still lack a fundamental microscopic understanding of their electronic structure. Elementary photoexcitations (excitons) span only a few nanometres of a molecule, which itself can extend over microns, and how their behaviour is affected by molecular dimensions is not immediately obvious. For example, where is the exciton formed within a conjugated segment and is it always situated on the same repeat units? Here, we introduce structurally rigid molecular spoked wheels, 6 nm in diameter, as a model of extended π conjugation. Single-molecule fluorescence reveals random exciton localization, which leads to temporally varying emission polarization. Initially, this random localization arises after every photon absorption event because of temperature-independent spontaneous symmetry breaking. These fast fluctuations are slowed to millisecond timescales after prolonged illumination. Intramolecular heterogeneity is revealed in cryogenic spectroscopy by jumps in transition energy, but emission polarization can also switch without a spectral jump occurring, which implies long-range homogeneity in the local dielectric environment. A deficiency in our molecular-level understanding of the electronic structure of conjugated polymers hinders their potential use in electronic applications. Shape-persistent highly ordered ring structures have been used to mimic conjugated polymers and have now been studied using single-molecule spectroscopy. The fundamentally non-deterministic nature of excitation energy localisation in π -conjugated macromolecules has been demonstrated.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>24153376</pmid><doi>10.1038/nchem.1758</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2013-11, Vol.5 (11), p.964-970
issn 1755-4330
1755-4349
language eng
recordid cdi_proquest_miscellaneous_1445912618
source MEDLINE; Springer Nature - Complete Springer Journals; Nature
subjects 639/638/440/527/1819
639/925/357/995
Analytical Chemistry
Biochemistry
Chemistry
Chemistry/Food Science
Fluorescence Resonance Energy Transfer
Inorganic Chemistry
Macrocyclic Compounds - chemistry
Models, Molecular
Molecular Structure
Organic Chemistry
Physical Chemistry
Polymers - chemistry
title Fluctuating exciton localization in giant π-conjugated spoked-wheel macrocycles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T10%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluctuating%20exciton%20localization%20in%20giant%20%CF%80-conjugated%20spoked-wheel%20macrocycles&rft.jtitle=Nature%20chemistry&rft.au=Aggarwal,%20A.%20Vikas&rft.date=2013-11-01&rft.volume=5&rft.issue=11&rft.spage=964&rft.epage=970&rft.pages=964-970&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.1758&rft_dat=%3Cproquest_cross%3E1445912618%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1445912618&rft_id=info:pmid/24153376&rfr_iscdi=true