Efficient Visible-Light Photocatalytic Hydrogen Evolution and Enhanced Photostability of Core/Shell CdS/g‑C3N4 Nanowires

CdS/g-C3N4 core/shell nanowires with different g-C3N4 contents were fabricated by a combined solvothermal and chemisorption method and characterized by X-ray powder diffraction, scanning electronic microscopy, transmission electron microscopy, and UV–vis diffuse reflection spectroscopy. The photocat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2013-10, Vol.5 (20), p.10317-10324
Hauptverfasser: Zhang, Jiye, Wang, Yonghao, Jin, Jian, Zhang, Jun, Lin, Zhang, Huang, Feng, Yu, Jiaguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CdS/g-C3N4 core/shell nanowires with different g-C3N4 contents were fabricated by a combined solvothermal and chemisorption method and characterized by X-ray powder diffraction, scanning electronic microscopy, transmission electron microscopy, and UV–vis diffuse reflection spectroscopy. The photocatalytic hydrogen-production activities of these samples were evaluated using Na2S and Na2SO3 as sacrificial reagents in water under visible-light illumination (λ ≥ 420 nm). The results show that after a spontaneous adsorption process g-C3N4 is successfully coated on CdS nanowires with intimate contact and can significantly improve the photocatalytic hydrogen-production rate of CdS nanowires, which reaches an optimal value of up to 4152 μmol h–1 g–1 at the g-C3N4 content of 2 wt %. More importantly, g-C3N4 coating can substantially reinforce the photostability of CdS nanowires even in a nonsacrificial system. The synergic effect between g-C3N4 and CdS, which can effectively accelerate the charge separation and transfer corrosive holes from CdS to robust C3N4, was proposed to be responsible for the enhancement of the photocatalytic activity and photostability. The possible conditions necessary for the synergic effect to work in a CdS/g-C3N4 core/shell configuration is also discussed.
ISSN:1944-8244
1944-8252
DOI:10.1021/am403327g