Morphologically Robust NiFe2O4 Nanofibers as High Capacity Li-Ion Battery Anode Material
In this work, the electrochemical performance of NiFe2O4 nanofibers synthesized by an electrospinning approach have been discussed in detail. Lithium storage properties of nanofibers are evaluated and compared with NiFe2O4 nanoparticles by galvanostatic cycling and cyclic voltammetry studies, both i...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2013-10, Vol.5 (20), p.9957-9963 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9963 |
---|---|
container_issue | 20 |
container_start_page | 9957 |
container_title | ACS applied materials & interfaces |
container_volume | 5 |
creator | Cherian, Christie Thomas Sundaramurthy, Jayaraman Reddy, M. V Suresh Kumar, Palanisamy Mani, Kalaivani Pliszka, Damian Sow, Chorng Haur Ramakrishna, Seeram Chowdari, B. V. R |
description | In this work, the electrochemical performance of NiFe2O4 nanofibers synthesized by an electrospinning approach have been discussed in detail. Lithium storage properties of nanofibers are evaluated and compared with NiFe2O4 nanoparticles by galvanostatic cycling and cyclic voltammetry studies, both in half-cell configurations. Nanofibers exhibit a higher charge-storage capacity of 1000 mAh g–1 even after 100 cycles with high Coulmbic efficiency of 100 % between 10 and 100 cycles. Ex situ microscopy studies confirmed that cycled nanofiber electrodes maintained the morphology and remained intact even after 100 charge–discharge cycles. The NiFe2O4 nanofiber electrode does not experience any structural stress and eventual pulverisation during lithium cycling and hence provides an efficient electron conducting pathway. The excellent electrochemical performance of NiFe2O4 nanofibers is due to the unique porous morphology of continuous nanofibers. |
doi_str_mv | 10.1021/am401779p |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1444856794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1444856794</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-97e11de01310d485f8bbd3518ad392de450322819c2f84249a2bcfa0f25a5baf3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRbK0u_AMyG8FNdB43TWZZi7WFPkAU3A03yaSdkmZiJlnk3xtp7eqeCx-Hw0fIPWfPnAn-ggdgPIpUdUGGXAEEsQjF5TkDDMiN93vGxlKw8JoMBDClOIyH5Hvl6mrnCre1KRZFRz9c0vqGru3MiA3QNZYut4mpPUVP53a7o1OsMLVNR5c2WLiSvmLTmLqjk9Jlhq6wfywWt-Qqx8Kbu9Mdka_Z2-d0Hiw374vpZBmgZFETqMhwnhnGJWcZxGEeJ0kmQx5jJpXIDIRMChFzlYo8BgEKRZLmyHIRYphgLkfk6dhb1e6nNb7RB-tTUxRYGtd6zQH62nGkoEcfTmibHEymq9oesO70v40eeDwCmHq9d21d9ss1Z_rPsj5blr_XnmsV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444856794</pqid></control><display><type>article</type><title>Morphologically Robust NiFe2O4 Nanofibers as High Capacity Li-Ion Battery Anode Material</title><source>MEDLINE</source><source>ACS Publications</source><creator>Cherian, Christie Thomas ; Sundaramurthy, Jayaraman ; Reddy, M. V ; Suresh Kumar, Palanisamy ; Mani, Kalaivani ; Pliszka, Damian ; Sow, Chorng Haur ; Ramakrishna, Seeram ; Chowdari, B. V. R</creator><creatorcontrib>Cherian, Christie Thomas ; Sundaramurthy, Jayaraman ; Reddy, M. V ; Suresh Kumar, Palanisamy ; Mani, Kalaivani ; Pliszka, Damian ; Sow, Chorng Haur ; Ramakrishna, Seeram ; Chowdari, B. V. R</creatorcontrib><description>In this work, the electrochemical performance of NiFe2O4 nanofibers synthesized by an electrospinning approach have been discussed in detail. Lithium storage properties of nanofibers are evaluated and compared with NiFe2O4 nanoparticles by galvanostatic cycling and cyclic voltammetry studies, both in half-cell configurations. Nanofibers exhibit a higher charge-storage capacity of 1000 mAh g–1 even after 100 cycles with high Coulmbic efficiency of 100 % between 10 and 100 cycles. Ex situ microscopy studies confirmed that cycled nanofiber electrodes maintained the morphology and remained intact even after 100 charge–discharge cycles. The NiFe2O4 nanofiber electrode does not experience any structural stress and eventual pulverisation during lithium cycling and hence provides an efficient electron conducting pathway. The excellent electrochemical performance of NiFe2O4 nanofibers is due to the unique porous morphology of continuous nanofibers.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am401779p</identifier><identifier>PMID: 24099146</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Electric Power Supplies ; Electrochemical Techniques ; Electrodes ; Ferric Compounds - chemistry ; Ions - chemistry ; Lithium - chemistry ; Nanofibers - chemistry ; Nickel - chemistry ; Povidone - chemistry ; Temperature</subject><ispartof>ACS applied materials & interfaces, 2013-10, Vol.5 (20), p.9957-9963</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/am401779p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/am401779p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24099146$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cherian, Christie Thomas</creatorcontrib><creatorcontrib>Sundaramurthy, Jayaraman</creatorcontrib><creatorcontrib>Reddy, M. V</creatorcontrib><creatorcontrib>Suresh Kumar, Palanisamy</creatorcontrib><creatorcontrib>Mani, Kalaivani</creatorcontrib><creatorcontrib>Pliszka, Damian</creatorcontrib><creatorcontrib>Sow, Chorng Haur</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><creatorcontrib>Chowdari, B. V. R</creatorcontrib><title>Morphologically Robust NiFe2O4 Nanofibers as High Capacity Li-Ion Battery Anode Material</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>In this work, the electrochemical performance of NiFe2O4 nanofibers synthesized by an electrospinning approach have been discussed in detail. Lithium storage properties of nanofibers are evaluated and compared with NiFe2O4 nanoparticles by galvanostatic cycling and cyclic voltammetry studies, both in half-cell configurations. Nanofibers exhibit a higher charge-storage capacity of 1000 mAh g–1 even after 100 cycles with high Coulmbic efficiency of 100 % between 10 and 100 cycles. Ex situ microscopy studies confirmed that cycled nanofiber electrodes maintained the morphology and remained intact even after 100 charge–discharge cycles. The NiFe2O4 nanofiber electrode does not experience any structural stress and eventual pulverisation during lithium cycling and hence provides an efficient electron conducting pathway. The excellent electrochemical performance of NiFe2O4 nanofibers is due to the unique porous morphology of continuous nanofibers.</description><subject>Electric Power Supplies</subject><subject>Electrochemical Techniques</subject><subject>Electrodes</subject><subject>Ferric Compounds - chemistry</subject><subject>Ions - chemistry</subject><subject>Lithium - chemistry</subject><subject>Nanofibers - chemistry</subject><subject>Nickel - chemistry</subject><subject>Povidone - chemistry</subject><subject>Temperature</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtLw0AUhQdRbK0u_AMyG8FNdB43TWZZi7WFPkAU3A03yaSdkmZiJlnk3xtp7eqeCx-Hw0fIPWfPnAn-ggdgPIpUdUGGXAEEsQjF5TkDDMiN93vGxlKw8JoMBDClOIyH5Hvl6mrnCre1KRZFRz9c0vqGru3MiA3QNZYut4mpPUVP53a7o1OsMLVNR5c2WLiSvmLTmLqjk9Jlhq6wfywWt-Qqx8Kbu9Mdka_Z2-d0Hiw374vpZBmgZFETqMhwnhnGJWcZxGEeJ0kmQx5jJpXIDIRMChFzlYo8BgEKRZLmyHIRYphgLkfk6dhb1e6nNb7RB-tTUxRYGtd6zQH62nGkoEcfTmibHEymq9oesO70v40eeDwCmHq9d21d9ss1Z_rPsj5blr_XnmsV</recordid><startdate>20131023</startdate><enddate>20131023</enddate><creator>Cherian, Christie Thomas</creator><creator>Sundaramurthy, Jayaraman</creator><creator>Reddy, M. V</creator><creator>Suresh Kumar, Palanisamy</creator><creator>Mani, Kalaivani</creator><creator>Pliszka, Damian</creator><creator>Sow, Chorng Haur</creator><creator>Ramakrishna, Seeram</creator><creator>Chowdari, B. V. R</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20131023</creationdate><title>Morphologically Robust NiFe2O4 Nanofibers as High Capacity Li-Ion Battery Anode Material</title><author>Cherian, Christie Thomas ; Sundaramurthy, Jayaraman ; Reddy, M. V ; Suresh Kumar, Palanisamy ; Mani, Kalaivani ; Pliszka, Damian ; Sow, Chorng Haur ; Ramakrishna, Seeram ; Chowdari, B. V. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-97e11de01310d485f8bbd3518ad392de450322819c2f84249a2bcfa0f25a5baf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Electric Power Supplies</topic><topic>Electrochemical Techniques</topic><topic>Electrodes</topic><topic>Ferric Compounds - chemistry</topic><topic>Ions - chemistry</topic><topic>Lithium - chemistry</topic><topic>Nanofibers - chemistry</topic><topic>Nickel - chemistry</topic><topic>Povidone - chemistry</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cherian, Christie Thomas</creatorcontrib><creatorcontrib>Sundaramurthy, Jayaraman</creatorcontrib><creatorcontrib>Reddy, M. V</creatorcontrib><creatorcontrib>Suresh Kumar, Palanisamy</creatorcontrib><creatorcontrib>Mani, Kalaivani</creatorcontrib><creatorcontrib>Pliszka, Damian</creatorcontrib><creatorcontrib>Sow, Chorng Haur</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><creatorcontrib>Chowdari, B. V. R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherian, Christie Thomas</au><au>Sundaramurthy, Jayaraman</au><au>Reddy, M. V</au><au>Suresh Kumar, Palanisamy</au><au>Mani, Kalaivani</au><au>Pliszka, Damian</au><au>Sow, Chorng Haur</au><au>Ramakrishna, Seeram</au><au>Chowdari, B. V. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphologically Robust NiFe2O4 Nanofibers as High Capacity Li-Ion Battery Anode Material</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2013-10-23</date><risdate>2013</risdate><volume>5</volume><issue>20</issue><spage>9957</spage><epage>9963</epage><pages>9957-9963</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>In this work, the electrochemical performance of NiFe2O4 nanofibers synthesized by an electrospinning approach have been discussed in detail. Lithium storage properties of nanofibers are evaluated and compared with NiFe2O4 nanoparticles by galvanostatic cycling and cyclic voltammetry studies, both in half-cell configurations. Nanofibers exhibit a higher charge-storage capacity of 1000 mAh g–1 even after 100 cycles with high Coulmbic efficiency of 100 % between 10 and 100 cycles. Ex situ microscopy studies confirmed that cycled nanofiber electrodes maintained the morphology and remained intact even after 100 charge–discharge cycles. The NiFe2O4 nanofiber electrode does not experience any structural stress and eventual pulverisation during lithium cycling and hence provides an efficient electron conducting pathway. The excellent electrochemical performance of NiFe2O4 nanofibers is due to the unique porous morphology of continuous nanofibers.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24099146</pmid><doi>10.1021/am401779p</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2013-10, Vol.5 (20), p.9957-9963 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_1444856794 |
source | MEDLINE; ACS Publications |
subjects | Electric Power Supplies Electrochemical Techniques Electrodes Ferric Compounds - chemistry Ions - chemistry Lithium - chemistry Nanofibers - chemistry Nickel - chemistry Povidone - chemistry Temperature |
title | Morphologically Robust NiFe2O4 Nanofibers as High Capacity Li-Ion Battery Anode Material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphologically%20Robust%20NiFe2O4%20Nanofibers%20as%20High%20Capacity%20Li-Ion%20Battery%20Anode%20Material&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Cherian,%20Christie%20Thomas&rft.date=2013-10-23&rft.volume=5&rft.issue=20&rft.spage=9957&rft.epage=9963&rft.pages=9957-9963&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am401779p&rft_dat=%3Cproquest_pubme%3E1444856794%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1444856794&rft_id=info:pmid/24099146&rfr_iscdi=true |