Morphologically Robust NiFe2O4 Nanofibers as High Capacity Li-Ion Battery Anode Material

In this work, the electrochemical performance of NiFe2O4 nanofibers synthesized by an electrospinning approach have been discussed in detail. Lithium storage properties of nanofibers are evaluated and compared with NiFe2O4 nanoparticles by galvanostatic cycling and cyclic voltammetry studies, both i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2013-10, Vol.5 (20), p.9957-9963
Hauptverfasser: Cherian, Christie Thomas, Sundaramurthy, Jayaraman, Reddy, M. V, Suresh Kumar, Palanisamy, Mani, Kalaivani, Pliszka, Damian, Sow, Chorng Haur, Ramakrishna, Seeram, Chowdari, B. V. R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9963
container_issue 20
container_start_page 9957
container_title ACS applied materials & interfaces
container_volume 5
creator Cherian, Christie Thomas
Sundaramurthy, Jayaraman
Reddy, M. V
Suresh Kumar, Palanisamy
Mani, Kalaivani
Pliszka, Damian
Sow, Chorng Haur
Ramakrishna, Seeram
Chowdari, B. V. R
description In this work, the electrochemical performance of NiFe2O4 nanofibers synthesized by an electrospinning approach have been discussed in detail. Lithium storage properties of nanofibers are evaluated and compared with NiFe2O4 nanoparticles by galvanostatic cycling and cyclic voltammetry studies, both in half-cell configurations. Nanofibers exhibit a higher charge-storage capacity of 1000 mAh g–1 even after 100 cycles with high Coulmbic efficiency of 100 % between 10 and 100 cycles. Ex situ microscopy studies confirmed that cycled nanofiber electrodes maintained the morphology and remained intact even after 100 charge–discharge cycles. The NiFe2O4 nanofiber electrode does not experience any structural stress and eventual pulverisation during lithium cycling and hence provides an efficient electron conducting pathway. The excellent electrochemical performance of NiFe2O4 nanofibers is due to the unique porous morphology of continuous nanofibers.
doi_str_mv 10.1021/am401779p
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1444856794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1444856794</sourcerecordid><originalsourceid>FETCH-LOGICAL-a307t-97e11de01310d485f8bbd3518ad392de450322819c2f84249a2bcfa0f25a5baf3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRbK0u_AMyG8FNdB43TWZZi7WFPkAU3A03yaSdkmZiJlnk3xtp7eqeCx-Hw0fIPWfPnAn-ggdgPIpUdUGGXAEEsQjF5TkDDMiN93vGxlKw8JoMBDClOIyH5Hvl6mrnCre1KRZFRz9c0vqGru3MiA3QNZYut4mpPUVP53a7o1OsMLVNR5c2WLiSvmLTmLqjk9Jlhq6wfywWt-Qqx8Kbu9Mdka_Z2-d0Hiw374vpZBmgZFETqMhwnhnGJWcZxGEeJ0kmQx5jJpXIDIRMChFzlYo8BgEKRZLmyHIRYphgLkfk6dhb1e6nNb7RB-tTUxRYGtd6zQH62nGkoEcfTmibHEymq9oesO70v40eeDwCmHq9d21d9ss1Z_rPsj5blr_XnmsV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444856794</pqid></control><display><type>article</type><title>Morphologically Robust NiFe2O4 Nanofibers as High Capacity Li-Ion Battery Anode Material</title><source>MEDLINE</source><source>ACS Publications</source><creator>Cherian, Christie Thomas ; Sundaramurthy, Jayaraman ; Reddy, M. V ; Suresh Kumar, Palanisamy ; Mani, Kalaivani ; Pliszka, Damian ; Sow, Chorng Haur ; Ramakrishna, Seeram ; Chowdari, B. V. R</creator><creatorcontrib>Cherian, Christie Thomas ; Sundaramurthy, Jayaraman ; Reddy, M. V ; Suresh Kumar, Palanisamy ; Mani, Kalaivani ; Pliszka, Damian ; Sow, Chorng Haur ; Ramakrishna, Seeram ; Chowdari, B. V. R</creatorcontrib><description>In this work, the electrochemical performance of NiFe2O4 nanofibers synthesized by an electrospinning approach have been discussed in detail. Lithium storage properties of nanofibers are evaluated and compared with NiFe2O4 nanoparticles by galvanostatic cycling and cyclic voltammetry studies, both in half-cell configurations. Nanofibers exhibit a higher charge-storage capacity of 1000 mAh g–1 even after 100 cycles with high Coulmbic efficiency of 100 % between 10 and 100 cycles. Ex situ microscopy studies confirmed that cycled nanofiber electrodes maintained the morphology and remained intact even after 100 charge–discharge cycles. The NiFe2O4 nanofiber electrode does not experience any structural stress and eventual pulverisation during lithium cycling and hence provides an efficient electron conducting pathway. The excellent electrochemical performance of NiFe2O4 nanofibers is due to the unique porous morphology of continuous nanofibers.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am401779p</identifier><identifier>PMID: 24099146</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Electric Power Supplies ; Electrochemical Techniques ; Electrodes ; Ferric Compounds - chemistry ; Ions - chemistry ; Lithium - chemistry ; Nanofibers - chemistry ; Nickel - chemistry ; Povidone - chemistry ; Temperature</subject><ispartof>ACS applied materials &amp; interfaces, 2013-10, Vol.5 (20), p.9957-9963</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/am401779p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/am401779p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24099146$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cherian, Christie Thomas</creatorcontrib><creatorcontrib>Sundaramurthy, Jayaraman</creatorcontrib><creatorcontrib>Reddy, M. V</creatorcontrib><creatorcontrib>Suresh Kumar, Palanisamy</creatorcontrib><creatorcontrib>Mani, Kalaivani</creatorcontrib><creatorcontrib>Pliszka, Damian</creatorcontrib><creatorcontrib>Sow, Chorng Haur</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><creatorcontrib>Chowdari, B. V. R</creatorcontrib><title>Morphologically Robust NiFe2O4 Nanofibers as High Capacity Li-Ion Battery Anode Material</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>In this work, the electrochemical performance of NiFe2O4 nanofibers synthesized by an electrospinning approach have been discussed in detail. Lithium storage properties of nanofibers are evaluated and compared with NiFe2O4 nanoparticles by galvanostatic cycling and cyclic voltammetry studies, both in half-cell configurations. Nanofibers exhibit a higher charge-storage capacity of 1000 mAh g–1 even after 100 cycles with high Coulmbic efficiency of 100 % between 10 and 100 cycles. Ex situ microscopy studies confirmed that cycled nanofiber electrodes maintained the morphology and remained intact even after 100 charge–discharge cycles. The NiFe2O4 nanofiber electrode does not experience any structural stress and eventual pulverisation during lithium cycling and hence provides an efficient electron conducting pathway. The excellent electrochemical performance of NiFe2O4 nanofibers is due to the unique porous morphology of continuous nanofibers.</description><subject>Electric Power Supplies</subject><subject>Electrochemical Techniques</subject><subject>Electrodes</subject><subject>Ferric Compounds - chemistry</subject><subject>Ions - chemistry</subject><subject>Lithium - chemistry</subject><subject>Nanofibers - chemistry</subject><subject>Nickel - chemistry</subject><subject>Povidone - chemistry</subject><subject>Temperature</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kEtLw0AUhQdRbK0u_AMyG8FNdB43TWZZi7WFPkAU3A03yaSdkmZiJlnk3xtp7eqeCx-Hw0fIPWfPnAn-ggdgPIpUdUGGXAEEsQjF5TkDDMiN93vGxlKw8JoMBDClOIyH5Hvl6mrnCre1KRZFRz9c0vqGru3MiA3QNZYut4mpPUVP53a7o1OsMLVNR5c2WLiSvmLTmLqjk9Jlhq6wfywWt-Qqx8Kbu9Mdka_Z2-d0Hiw374vpZBmgZFETqMhwnhnGJWcZxGEeJ0kmQx5jJpXIDIRMChFzlYo8BgEKRZLmyHIRYphgLkfk6dhb1e6nNb7RB-tTUxRYGtd6zQH62nGkoEcfTmibHEymq9oesO70v40eeDwCmHq9d21d9ss1Z_rPsj5blr_XnmsV</recordid><startdate>20131023</startdate><enddate>20131023</enddate><creator>Cherian, Christie Thomas</creator><creator>Sundaramurthy, Jayaraman</creator><creator>Reddy, M. V</creator><creator>Suresh Kumar, Palanisamy</creator><creator>Mani, Kalaivani</creator><creator>Pliszka, Damian</creator><creator>Sow, Chorng Haur</creator><creator>Ramakrishna, Seeram</creator><creator>Chowdari, B. V. R</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20131023</creationdate><title>Morphologically Robust NiFe2O4 Nanofibers as High Capacity Li-Ion Battery Anode Material</title><author>Cherian, Christie Thomas ; Sundaramurthy, Jayaraman ; Reddy, M. V ; Suresh Kumar, Palanisamy ; Mani, Kalaivani ; Pliszka, Damian ; Sow, Chorng Haur ; Ramakrishna, Seeram ; Chowdari, B. V. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a307t-97e11de01310d485f8bbd3518ad392de450322819c2f84249a2bcfa0f25a5baf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Electric Power Supplies</topic><topic>Electrochemical Techniques</topic><topic>Electrodes</topic><topic>Ferric Compounds - chemistry</topic><topic>Ions - chemistry</topic><topic>Lithium - chemistry</topic><topic>Nanofibers - chemistry</topic><topic>Nickel - chemistry</topic><topic>Povidone - chemistry</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cherian, Christie Thomas</creatorcontrib><creatorcontrib>Sundaramurthy, Jayaraman</creatorcontrib><creatorcontrib>Reddy, M. V</creatorcontrib><creatorcontrib>Suresh Kumar, Palanisamy</creatorcontrib><creatorcontrib>Mani, Kalaivani</creatorcontrib><creatorcontrib>Pliszka, Damian</creatorcontrib><creatorcontrib>Sow, Chorng Haur</creatorcontrib><creatorcontrib>Ramakrishna, Seeram</creatorcontrib><creatorcontrib>Chowdari, B. V. R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cherian, Christie Thomas</au><au>Sundaramurthy, Jayaraman</au><au>Reddy, M. V</au><au>Suresh Kumar, Palanisamy</au><au>Mani, Kalaivani</au><au>Pliszka, Damian</au><au>Sow, Chorng Haur</au><au>Ramakrishna, Seeram</au><au>Chowdari, B. V. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Morphologically Robust NiFe2O4 Nanofibers as High Capacity Li-Ion Battery Anode Material</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2013-10-23</date><risdate>2013</risdate><volume>5</volume><issue>20</issue><spage>9957</spage><epage>9963</epage><pages>9957-9963</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>In this work, the electrochemical performance of NiFe2O4 nanofibers synthesized by an electrospinning approach have been discussed in detail. Lithium storage properties of nanofibers are evaluated and compared with NiFe2O4 nanoparticles by galvanostatic cycling and cyclic voltammetry studies, both in half-cell configurations. Nanofibers exhibit a higher charge-storage capacity of 1000 mAh g–1 even after 100 cycles with high Coulmbic efficiency of 100 % between 10 and 100 cycles. Ex situ microscopy studies confirmed that cycled nanofiber electrodes maintained the morphology and remained intact even after 100 charge–discharge cycles. The NiFe2O4 nanofiber electrode does not experience any structural stress and eventual pulverisation during lithium cycling and hence provides an efficient electron conducting pathway. The excellent electrochemical performance of NiFe2O4 nanofibers is due to the unique porous morphology of continuous nanofibers.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24099146</pmid><doi>10.1021/am401779p</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2013-10, Vol.5 (20), p.9957-9963
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1444856794
source MEDLINE; ACS Publications
subjects Electric Power Supplies
Electrochemical Techniques
Electrodes
Ferric Compounds - chemistry
Ions - chemistry
Lithium - chemistry
Nanofibers - chemistry
Nickel - chemistry
Povidone - chemistry
Temperature
title Morphologically Robust NiFe2O4 Nanofibers as High Capacity Li-Ion Battery Anode Material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Morphologically%20Robust%20NiFe2O4%20Nanofibers%20as%20High%20Capacity%20Li-Ion%20Battery%20Anode%20Material&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Cherian,%20Christie%20Thomas&rft.date=2013-10-23&rft.volume=5&rft.issue=20&rft.spage=9957&rft.epage=9963&rft.pages=9957-9963&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am401779p&rft_dat=%3Cproquest_pubme%3E1444856794%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1444856794&rft_id=info:pmid/24099146&rfr_iscdi=true