Investigation of Nasal CO2 Receptor Transduction Mechanisms in Wild-type and GC-D Knockout Mice

The main olfactory system of mice contains a small subset of olfactory sensory neurons (OSNs) that are stimulated by CO₂. The objective of this study was to record olfactory receptor responses to a range of CO₂ concentrations to further elucidate steps in the proposed CO₂ transduction pathway in mic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical senses 2013-11, Vol.38 (9), p.769-781
Hauptverfasser: KENEMUTH, Jessica K, HENNESSY, Shane P, HANSON, Ryan J, HENSLER, Allison J, LEE COATES, E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 781
container_issue 9
container_start_page 769
container_title Chemical senses
container_volume 38
creator KENEMUTH, Jessica K
HENNESSY, Shane P
HANSON, Ryan J
HENSLER, Allison J
LEE COATES, E
description The main olfactory system of mice contains a small subset of olfactory sensory neurons (OSNs) that are stimulated by CO₂. The objective of this study was to record olfactory receptor responses to a range of CO₂ concentrations to further elucidate steps in the proposed CO₂ transduction pathway in mice. Electro-olfactograms (EOGs) were recorded before and after inhibiting specific steps in the CO₂ transduction pathway with topically applied inhibitors. Inhibition of extracellular carbonic anhydrase (CA) did not significantly affect EOG responses to CO₂ but did decrease EOG responses to several control odorants. Inhibition of intracellular CA or cyclic nucleotide-gated channels attenuated EOG responses to CO₂, confirming the role of these components in CO₂ sensing in mice. We also show that, like canonical OSNs, CO₂-sensitive OSNs depend on Ca²⁺-activated Cl⁻ channels for depolarization of receptor neurons. Lastly, we found that guanylyl cyclase-D knockout mice were still able to respond to CO₂, indicating that other pathways may exist for the detection of low concentrations of nasal CO₂. We discuss these findings as they relate to previous studies on CO₂-sensitive OSNs in mice and other animals.
doi_str_mv 10.1093/chemse/bjt044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1443998961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1443998961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-6f38296bea9d297d28f8cc8c874ddc0ea84d1fcf1ae4c77f0f96e506bf93aa113</originalsourceid><addsrcrecordid>eNpF0EtLAzEUhuEgiq2XpVvJRnAzmltnkqXUW7FakIruhvTkRKNzqZMZof_e1lZdnc3DB-cl5IizM86MPIc3LCOez95bptQW6XOVqkQOBnKb9JnMTKJT9dIjezG-M8aVFHqX9ITiQkhu-iQfVV8Y2_Bq21BXtPb0wUZb0OFE0EcEnLd1Q6eNraLr4IfcI7zZKsQy0lDR51C4pF3MkdrK0Zthcknvqho-6q6l9wHwgOx4W0Q83Nx98nR9NR3eJuPJzWh4MU5ACd0mqZdamHSG1jhhMie01wAadKacA4ZWK8c9eG5RQZZ55k2KA5bOvJHWci73yel6d97Un93yo7wMEbAobIV1F3OulDRGm3RFkzWFpo6xQZ_Pm1DaZpFzlq-a5uum-brp0h9vprtZie5P_0ZcgpMNsBFs4Ze1IMR_l2mlmJDyG2ORgZk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443998961</pqid></control><display><type>article</type><title>Investigation of Nasal CO2 Receptor Transduction Mechanisms in Wild-type and GC-D Knockout Mice</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>KENEMUTH, Jessica K ; HENNESSY, Shane P ; HANSON, Ryan J ; HENSLER, Allison J ; LEE COATES, E</creator><creatorcontrib>KENEMUTH, Jessica K ; HENNESSY, Shane P ; HANSON, Ryan J ; HENSLER, Allison J ; LEE COATES, E</creatorcontrib><description>The main olfactory system of mice contains a small subset of olfactory sensory neurons (OSNs) that are stimulated by CO₂. The objective of this study was to record olfactory receptor responses to a range of CO₂ concentrations to further elucidate steps in the proposed CO₂ transduction pathway in mice. Electro-olfactograms (EOGs) were recorded before and after inhibiting specific steps in the CO₂ transduction pathway with topically applied inhibitors. Inhibition of extracellular carbonic anhydrase (CA) did not significantly affect EOG responses to CO₂ but did decrease EOG responses to several control odorants. Inhibition of intracellular CA or cyclic nucleotide-gated channels attenuated EOG responses to CO₂, confirming the role of these components in CO₂ sensing in mice. We also show that, like canonical OSNs, CO₂-sensitive OSNs depend on Ca²⁺-activated Cl⁻ channels for depolarization of receptor neurons. Lastly, we found that guanylyl cyclase-D knockout mice were still able to respond to CO₂, indicating that other pathways may exist for the detection of low concentrations of nasal CO₂. We discuss these findings as they relate to previous studies on CO₂-sensitive OSNs in mice and other animals.</description><identifier>ISSN: 0379-864X</identifier><identifier>EISSN: 1464-3553</identifier><identifier>DOI: 10.1093/chemse/bjt044</identifier><identifier>PMID: 24122319</identifier><identifier>CODEN: CHSED8</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Animals ; Biological and medical sciences ; Carbon Dioxide - pharmacology ; Chloride Channels - metabolism ; Cyclic Nucleotide-Gated Cation Channels - metabolism ; Electrophysiological Phenomena ; Female ; Fundamental and applied biological sciences. Psychology ; Guanylate Cyclase - deficiency ; Guanylate Cyclase - genetics ; Guanylate Cyclase - metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Nasal Mucosa - drug effects ; Nasal Mucosa - physiology ; Olfaction. Taste ; Olfactory Receptor Neurons - metabolism ; Pentanols - pharmacology ; Perception ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Receptors, Cell Surface - deficiency ; Receptors, Cell Surface - genetics ; Receptors, Cell Surface - metabolism ; Signal Transduction - drug effects ; Smell - physiology</subject><ispartof>Chemical senses, 2013-11, Vol.38 (9), p.769-781</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-6f38296bea9d297d28f8cc8c874ddc0ea84d1fcf1ae4c77f0f96e506bf93aa113</citedby><cites>FETCH-LOGICAL-c428t-6f38296bea9d297d28f8cc8c874ddc0ea84d1fcf1ae4c77f0f96e506bf93aa113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27844023$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24122319$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>KENEMUTH, Jessica K</creatorcontrib><creatorcontrib>HENNESSY, Shane P</creatorcontrib><creatorcontrib>HANSON, Ryan J</creatorcontrib><creatorcontrib>HENSLER, Allison J</creatorcontrib><creatorcontrib>LEE COATES, E</creatorcontrib><title>Investigation of Nasal CO2 Receptor Transduction Mechanisms in Wild-type and GC-D Knockout Mice</title><title>Chemical senses</title><addtitle>Chem Senses</addtitle><description>The main olfactory system of mice contains a small subset of olfactory sensory neurons (OSNs) that are stimulated by CO₂. The objective of this study was to record olfactory receptor responses to a range of CO₂ concentrations to further elucidate steps in the proposed CO₂ transduction pathway in mice. Electro-olfactograms (EOGs) were recorded before and after inhibiting specific steps in the CO₂ transduction pathway with topically applied inhibitors. Inhibition of extracellular carbonic anhydrase (CA) did not significantly affect EOG responses to CO₂ but did decrease EOG responses to several control odorants. Inhibition of intracellular CA or cyclic nucleotide-gated channels attenuated EOG responses to CO₂, confirming the role of these components in CO₂ sensing in mice. We also show that, like canonical OSNs, CO₂-sensitive OSNs depend on Ca²⁺-activated Cl⁻ channels for depolarization of receptor neurons. Lastly, we found that guanylyl cyclase-D knockout mice were still able to respond to CO₂, indicating that other pathways may exist for the detection of low concentrations of nasal CO₂. We discuss these findings as they relate to previous studies on CO₂-sensitive OSNs in mice and other animals.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Carbon Dioxide - pharmacology</subject><subject>Chloride Channels - metabolism</subject><subject>Cyclic Nucleotide-Gated Cation Channels - metabolism</subject><subject>Electrophysiological Phenomena</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Guanylate Cyclase - deficiency</subject><subject>Guanylate Cyclase - genetics</subject><subject>Guanylate Cyclase - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Nasal Mucosa - drug effects</subject><subject>Nasal Mucosa - physiology</subject><subject>Olfaction. Taste</subject><subject>Olfactory Receptor Neurons - metabolism</subject><subject>Pentanols - pharmacology</subject><subject>Perception</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Receptors, Cell Surface - deficiency</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Smell - physiology</subject><issn>0379-864X</issn><issn>1464-3553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpF0EtLAzEUhuEgiq2XpVvJRnAzmltnkqXUW7FakIruhvTkRKNzqZMZof_e1lZdnc3DB-cl5IizM86MPIc3LCOez95bptQW6XOVqkQOBnKb9JnMTKJT9dIjezG-M8aVFHqX9ITiQkhu-iQfVV8Y2_Bq21BXtPb0wUZb0OFE0EcEnLd1Q6eNraLr4IfcI7zZKsQy0lDR51C4pF3MkdrK0Zthcknvqho-6q6l9wHwgOx4W0Q83Nx98nR9NR3eJuPJzWh4MU5ACd0mqZdamHSG1jhhMie01wAadKacA4ZWK8c9eG5RQZZ55k2KA5bOvJHWci73yel6d97Un93yo7wMEbAobIV1F3OulDRGm3RFkzWFpo6xQZ_Pm1DaZpFzlq-a5uum-brp0h9vprtZie5P_0ZcgpMNsBFs4Ze1IMR_l2mlmJDyG2ORgZk</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>KENEMUTH, Jessica K</creator><creator>HENNESSY, Shane P</creator><creator>HANSON, Ryan J</creator><creator>HENSLER, Allison J</creator><creator>LEE COATES, E</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20131101</creationdate><title>Investigation of Nasal CO2 Receptor Transduction Mechanisms in Wild-type and GC-D Knockout Mice</title><author>KENEMUTH, Jessica K ; HENNESSY, Shane P ; HANSON, Ryan J ; HENSLER, Allison J ; LEE COATES, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-6f38296bea9d297d28f8cc8c874ddc0ea84d1fcf1ae4c77f0f96e506bf93aa113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Carbon Dioxide - pharmacology</topic><topic>Chloride Channels - metabolism</topic><topic>Cyclic Nucleotide-Gated Cation Channels - metabolism</topic><topic>Electrophysiological Phenomena</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Guanylate Cyclase - deficiency</topic><topic>Guanylate Cyclase - genetics</topic><topic>Guanylate Cyclase - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Nasal Mucosa - drug effects</topic><topic>Nasal Mucosa - physiology</topic><topic>Olfaction. Taste</topic><topic>Olfactory Receptor Neurons - metabolism</topic><topic>Pentanols - pharmacology</topic><topic>Perception</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Receptors, Cell Surface - deficiency</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Smell - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KENEMUTH, Jessica K</creatorcontrib><creatorcontrib>HENNESSY, Shane P</creatorcontrib><creatorcontrib>HANSON, Ryan J</creatorcontrib><creatorcontrib>HENSLER, Allison J</creatorcontrib><creatorcontrib>LEE COATES, E</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical senses</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KENEMUTH, Jessica K</au><au>HENNESSY, Shane P</au><au>HANSON, Ryan J</au><au>HENSLER, Allison J</au><au>LEE COATES, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Nasal CO2 Receptor Transduction Mechanisms in Wild-type and GC-D Knockout Mice</atitle><jtitle>Chemical senses</jtitle><addtitle>Chem Senses</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>38</volume><issue>9</issue><spage>769</spage><epage>781</epage><pages>769-781</pages><issn>0379-864X</issn><eissn>1464-3553</eissn><coden>CHSED8</coden><abstract>The main olfactory system of mice contains a small subset of olfactory sensory neurons (OSNs) that are stimulated by CO₂. The objective of this study was to record olfactory receptor responses to a range of CO₂ concentrations to further elucidate steps in the proposed CO₂ transduction pathway in mice. Electro-olfactograms (EOGs) were recorded before and after inhibiting specific steps in the CO₂ transduction pathway with topically applied inhibitors. Inhibition of extracellular carbonic anhydrase (CA) did not significantly affect EOG responses to CO₂ but did decrease EOG responses to several control odorants. Inhibition of intracellular CA or cyclic nucleotide-gated channels attenuated EOG responses to CO₂, confirming the role of these components in CO₂ sensing in mice. We also show that, like canonical OSNs, CO₂-sensitive OSNs depend on Ca²⁺-activated Cl⁻ channels for depolarization of receptor neurons. Lastly, we found that guanylyl cyclase-D knockout mice were still able to respond to CO₂, indicating that other pathways may exist for the detection of low concentrations of nasal CO₂. We discuss these findings as they relate to previous studies on CO₂-sensitive OSNs in mice and other animals.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>24122319</pmid><doi>10.1093/chemse/bjt044</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0379-864X
ispartof Chemical senses, 2013-11, Vol.38 (9), p.769-781
issn 0379-864X
1464-3553
language eng
recordid cdi_proquest_miscellaneous_1443998961
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological and medical sciences
Carbon Dioxide - pharmacology
Chloride Channels - metabolism
Cyclic Nucleotide-Gated Cation Channels - metabolism
Electrophysiological Phenomena
Female
Fundamental and applied biological sciences. Psychology
Guanylate Cyclase - deficiency
Guanylate Cyclase - genetics
Guanylate Cyclase - metabolism
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Nasal Mucosa - drug effects
Nasal Mucosa - physiology
Olfaction. Taste
Olfactory Receptor Neurons - metabolism
Pentanols - pharmacology
Perception
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Receptors, Cell Surface - deficiency
Receptors, Cell Surface - genetics
Receptors, Cell Surface - metabolism
Signal Transduction - drug effects
Smell - physiology
title Investigation of Nasal CO2 Receptor Transduction Mechanisms in Wild-type and GC-D Knockout Mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A26%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Nasal%20CO2%20Receptor%20Transduction%20Mechanisms%20in%20Wild-type%20and%20GC-D%20Knockout%20Mice&rft.jtitle=Chemical%20senses&rft.au=KENEMUTH,%20Jessica%20K&rft.date=2013-11-01&rft.volume=38&rft.issue=9&rft.spage=769&rft.epage=781&rft.pages=769-781&rft.issn=0379-864X&rft.eissn=1464-3553&rft.coden=CHSED8&rft_id=info:doi/10.1093/chemse/bjt044&rft_dat=%3Cproquest_cross%3E1443998961%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443998961&rft_id=info:pmid/24122319&rfr_iscdi=true