Structure-based modeling of energy transfer in photosynthesis

We provide a minimal model for a structure-based simulation of excitation energy transfer in pigment–protein complexes (PPCs). In our treatment, the PPC is assembled from its building blocks. The latter are defined such that electron exchange occurs only within, but not between these units. The vari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photosynthesis research 2013-10, Vol.116 (2-3), p.367-388
Hauptverfasser: Renger, Thomas, Madjet, Mohamed El-Amine, Schmidt am Busch, Marcel, Adolphs, Julian, Müh, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue 2-3
container_start_page 367
container_title Photosynthesis research
container_volume 116
creator Renger, Thomas
Madjet, Mohamed El-Amine
Schmidt am Busch, Marcel
Adolphs, Julian
Müh, Frank
description We provide a minimal model for a structure-based simulation of excitation energy transfer in pigment–protein complexes (PPCs). In our treatment, the PPC is assembled from its building blocks. The latter are defined such that electron exchange occurs only within, but not between these units. The variational principle is applied to investigate how the Coulomb interaction between building blocks changes the character of the electronic states of the PPC. In this way, the standard exciton Hamiltonian is obtained from first principles and a hierarchy of calculation schemes for the parameters of this Hamiltonian arises. Possible extensions of this approach are discussed concerning (i) the inclusion of dispersive site energy shifts and (ii) the inclusion of electron exchange between pigments. First results on electron exchange within the special pair of photosystem II of cyanobacteria and higher plants are presented and compared with earlier results on purple bacteria. In the last part of this mini-review, the coupling of electronic and nuclear degrees of freedom is considered. First, the standard exciton–vibrational Hamiltonian is parameterized with the help of a normal mode analysis of the PPC. Second, dynamical theories are discussed that exploit this Hamiltonian in the study of dissipative exciton motion.
doi_str_mv 10.1007/s11120-013-9893-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1443996319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102733451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-968e927c72b15644f9c9af0995cd2ad4c2952f7d2ff1d630e7bcb583f5ea3f293</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1URJfCD-BSInHhYpgZx0nm0ANa8SVV4lB6thzH3qbajbd2cth_T6KUCvXAyYd53nesZ4R4h_AJAerPGREJJKCS3LCS6oXYoK6V1FDzmdgAVpVsNOtz8TrnewBoKlSvxDkpJtSkN-LqZkyTG6fkZWuz74pD7Py-H3ZFDIUffNqdijHZIQefin4ojndxjPk0jHc-9_mNeBnsPvu3j--FuP329ff2h7z-9f3n9su1dBr0KLlqPFPtampRV2UZ2LENwKxdR7YrHbGmUHcUAnaVAl-3rtWNCtpbFYjVhfi49h5TfJh8Hs2hz87v93bwccoGy1IxVwoX9MMz9D5OaZh_t1DE1DBUM4Ur5VLMOflgjqk_2HQyCGZxa1a3ZnZrFrdGzZnLx-apPfjuKfFX5gzQCuR5NOx8-mf1f1rfr6Fgo7G71Gdze0OA5XItYiD1BxGVjJU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442928906</pqid></control><display><type>article</type><title>Structure-based modeling of energy transfer in photosynthesis</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Renger, Thomas ; Madjet, Mohamed El-Amine ; Schmidt am Busch, Marcel ; Adolphs, Julian ; Müh, Frank</creator><creatorcontrib>Renger, Thomas ; Madjet, Mohamed El-Amine ; Schmidt am Busch, Marcel ; Adolphs, Julian ; Müh, Frank</creatorcontrib><description>We provide a minimal model for a structure-based simulation of excitation energy transfer in pigment–protein complexes (PPCs). In our treatment, the PPC is assembled from its building blocks. The latter are defined such that electron exchange occurs only within, but not between these units. The variational principle is applied to investigate how the Coulomb interaction between building blocks changes the character of the electronic states of the PPC. In this way, the standard exciton Hamiltonian is obtained from first principles and a hierarchy of calculation schemes for the parameters of this Hamiltonian arises. Possible extensions of this approach are discussed concerning (i) the inclusion of dispersive site energy shifts and (ii) the inclusion of electron exchange between pigments. First results on electron exchange within the special pair of photosystem II of cyanobacteria and higher plants are presented and compared with earlier results on purple bacteria. In the last part of this mini-review, the coupling of electronic and nuclear degrees of freedom is considered. First, the standard exciton–vibrational Hamiltonian is parameterized with the help of a normal mode analysis of the PPC. Second, dynamical theories are discussed that exploit this Hamiltonian in the study of dissipative exciton motion.</description><identifier>ISSN: 0166-8595</identifier><identifier>EISSN: 1573-5079</identifier><identifier>DOI: 10.1007/s11120-013-9893-3</identifier><identifier>PMID: 23921525</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Cyanobacteria ; Electrons ; Energy Transfer ; Life Sciences ; Models, Biological ; Photobiology ; Photosynthesis ; photosystem II ; Pigments ; Plant Genetics and Genomics ; Plant Physiology ; Plant Sciences ; Proteins ; Proteobacteria ; Quantum Theory ; Review ; Thermodynamics</subject><ispartof>Photosynthesis research, 2013-10, Vol.116 (2-3), p.367-388</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-968e927c72b15644f9c9af0995cd2ad4c2952f7d2ff1d630e7bcb583f5ea3f293</citedby><cites>FETCH-LOGICAL-c505t-968e927c72b15644f9c9af0995cd2ad4c2952f7d2ff1d630e7bcb583f5ea3f293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11120-013-9893-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11120-013-9893-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23921525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Renger, Thomas</creatorcontrib><creatorcontrib>Madjet, Mohamed El-Amine</creatorcontrib><creatorcontrib>Schmidt am Busch, Marcel</creatorcontrib><creatorcontrib>Adolphs, Julian</creatorcontrib><creatorcontrib>Müh, Frank</creatorcontrib><title>Structure-based modeling of energy transfer in photosynthesis</title><title>Photosynthesis research</title><addtitle>Photosynth Res</addtitle><addtitle>Photosynth Res</addtitle><description>We provide a minimal model for a structure-based simulation of excitation energy transfer in pigment–protein complexes (PPCs). In our treatment, the PPC is assembled from its building blocks. The latter are defined such that electron exchange occurs only within, but not between these units. The variational principle is applied to investigate how the Coulomb interaction between building blocks changes the character of the electronic states of the PPC. In this way, the standard exciton Hamiltonian is obtained from first principles and a hierarchy of calculation schemes for the parameters of this Hamiltonian arises. Possible extensions of this approach are discussed concerning (i) the inclusion of dispersive site energy shifts and (ii) the inclusion of electron exchange between pigments. First results on electron exchange within the special pair of photosystem II of cyanobacteria and higher plants are presented and compared with earlier results on purple bacteria. In the last part of this mini-review, the coupling of electronic and nuclear degrees of freedom is considered. First, the standard exciton–vibrational Hamiltonian is parameterized with the help of a normal mode analysis of the PPC. Second, dynamical theories are discussed that exploit this Hamiltonian in the study of dissipative exciton motion.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cyanobacteria</subject><subject>Electrons</subject><subject>Energy Transfer</subject><subject>Life Sciences</subject><subject>Models, Biological</subject><subject>Photobiology</subject><subject>Photosynthesis</subject><subject>photosystem II</subject><subject>Pigments</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Proteins</subject><subject>Proteobacteria</subject><subject>Quantum Theory</subject><subject>Review</subject><subject>Thermodynamics</subject><issn>0166-8595</issn><issn>1573-5079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1v1DAQhi1URJfCD-BSInHhYpgZx0nm0ANa8SVV4lB6thzH3qbajbd2cth_T6KUCvXAyYd53nesZ4R4h_AJAerPGREJJKCS3LCS6oXYoK6V1FDzmdgAVpVsNOtz8TrnewBoKlSvxDkpJtSkN-LqZkyTG6fkZWuz74pD7Py-H3ZFDIUffNqdijHZIQefin4ojndxjPk0jHc-9_mNeBnsPvu3j--FuP329ff2h7z-9f3n9su1dBr0KLlqPFPtampRV2UZ2LENwKxdR7YrHbGmUHcUAnaVAl-3rtWNCtpbFYjVhfi49h5TfJh8Hs2hz87v93bwccoGy1IxVwoX9MMz9D5OaZh_t1DE1DBUM4Ur5VLMOflgjqk_2HQyCGZxa1a3ZnZrFrdGzZnLx-apPfjuKfFX5gzQCuR5NOx8-mf1f1rfr6Fgo7G71Gdze0OA5XItYiD1BxGVjJU</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Renger, Thomas</creator><creator>Madjet, Mohamed El-Amine</creator><creator>Schmidt am Busch, Marcel</creator><creator>Adolphs, Julian</creator><creator>Müh, Frank</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20131001</creationdate><title>Structure-based modeling of energy transfer in photosynthesis</title><author>Renger, Thomas ; Madjet, Mohamed El-Amine ; Schmidt am Busch, Marcel ; Adolphs, Julian ; Müh, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-968e927c72b15644f9c9af0995cd2ad4c2952f7d2ff1d630e7bcb583f5ea3f293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cyanobacteria</topic><topic>Electrons</topic><topic>Energy Transfer</topic><topic>Life Sciences</topic><topic>Models, Biological</topic><topic>Photobiology</topic><topic>Photosynthesis</topic><topic>photosystem II</topic><topic>Pigments</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Proteins</topic><topic>Proteobacteria</topic><topic>Quantum Theory</topic><topic>Review</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renger, Thomas</creatorcontrib><creatorcontrib>Madjet, Mohamed El-Amine</creatorcontrib><creatorcontrib>Schmidt am Busch, Marcel</creatorcontrib><creatorcontrib>Adolphs, Julian</creatorcontrib><creatorcontrib>Müh, Frank</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Photosynthesis research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renger, Thomas</au><au>Madjet, Mohamed El-Amine</au><au>Schmidt am Busch, Marcel</au><au>Adolphs, Julian</au><au>Müh, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-based modeling of energy transfer in photosynthesis</atitle><jtitle>Photosynthesis research</jtitle><stitle>Photosynth Res</stitle><addtitle>Photosynth Res</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>116</volume><issue>2-3</issue><spage>367</spage><epage>388</epage><pages>367-388</pages><issn>0166-8595</issn><eissn>1573-5079</eissn><abstract>We provide a minimal model for a structure-based simulation of excitation energy transfer in pigment–protein complexes (PPCs). In our treatment, the PPC is assembled from its building blocks. The latter are defined such that electron exchange occurs only within, but not between these units. The variational principle is applied to investigate how the Coulomb interaction between building blocks changes the character of the electronic states of the PPC. In this way, the standard exciton Hamiltonian is obtained from first principles and a hierarchy of calculation schemes for the parameters of this Hamiltonian arises. Possible extensions of this approach are discussed concerning (i) the inclusion of dispersive site energy shifts and (ii) the inclusion of electron exchange between pigments. First results on electron exchange within the special pair of photosystem II of cyanobacteria and higher plants are presented and compared with earlier results on purple bacteria. In the last part of this mini-review, the coupling of electronic and nuclear degrees of freedom is considered. First, the standard exciton–vibrational Hamiltonian is parameterized with the help of a normal mode analysis of the PPC. Second, dynamical theories are discussed that exploit this Hamiltonian in the study of dissipative exciton motion.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><pmid>23921525</pmid><doi>10.1007/s11120-013-9893-3</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-8595
ispartof Photosynthesis research, 2013-10, Vol.116 (2-3), p.367-388
issn 0166-8595
1573-5079
language eng
recordid cdi_proquest_miscellaneous_1443996319
source MEDLINE; SpringerLink Journals
subjects Biochemistry
Biomedical and Life Sciences
Cyanobacteria
Electrons
Energy Transfer
Life Sciences
Models, Biological
Photobiology
Photosynthesis
photosystem II
Pigments
Plant Genetics and Genomics
Plant Physiology
Plant Sciences
Proteins
Proteobacteria
Quantum Theory
Review
Thermodynamics
title Structure-based modeling of energy transfer in photosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T06%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-based%20modeling%20of%20energy%20transfer%20in%20photosynthesis&rft.jtitle=Photosynthesis%20research&rft.au=Renger,%20Thomas&rft.date=2013-10-01&rft.volume=116&rft.issue=2-3&rft.spage=367&rft.epage=388&rft.pages=367-388&rft.issn=0166-8595&rft.eissn=1573-5079&rft_id=info:doi/10.1007/s11120-013-9893-3&rft_dat=%3Cproquest_cross%3E3102733451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442928906&rft_id=info:pmid/23921525&rfr_iscdi=true