Structure-based modeling of energy transfer in photosynthesis
We provide a minimal model for a structure-based simulation of excitation energy transfer in pigment–protein complexes (PPCs). In our treatment, the PPC is assembled from its building blocks. The latter are defined such that electron exchange occurs only within, but not between these units. The vari...
Gespeichert in:
Veröffentlicht in: | Photosynthesis research 2013-10, Vol.116 (2-3), p.367-388 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 388 |
---|---|
container_issue | 2-3 |
container_start_page | 367 |
container_title | Photosynthesis research |
container_volume | 116 |
creator | Renger, Thomas Madjet, Mohamed El-Amine Schmidt am Busch, Marcel Adolphs, Julian Müh, Frank |
description | We provide a minimal model for a structure-based simulation of excitation energy transfer in pigment–protein complexes (PPCs). In our treatment, the PPC is assembled from its building blocks. The latter are defined such that electron exchange occurs only within, but not between these units. The variational principle is applied to investigate how the Coulomb interaction between building blocks changes the character of the electronic states of the PPC. In this way, the standard exciton Hamiltonian is obtained from first principles and a hierarchy of calculation schemes for the parameters of this Hamiltonian arises. Possible extensions of this approach are discussed concerning (i) the inclusion of dispersive site energy shifts and (ii) the inclusion of electron exchange between pigments. First results on electron exchange within the special pair of photosystem II of cyanobacteria and higher plants are presented and compared with earlier results on purple bacteria. In the last part of this mini-review, the coupling of electronic and nuclear degrees of freedom is considered. First, the standard exciton–vibrational Hamiltonian is parameterized with the help of a normal mode analysis of the PPC. Second, dynamical theories are discussed that exploit this Hamiltonian in the study of dissipative exciton motion. |
doi_str_mv | 10.1007/s11120-013-9893-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1443996319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102733451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-968e927c72b15644f9c9af0995cd2ad4c2952f7d2ff1d630e7bcb583f5ea3f293</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1URJfCD-BSInHhYpgZx0nm0ANa8SVV4lB6thzH3qbajbd2cth_T6KUCvXAyYd53nesZ4R4h_AJAerPGREJJKCS3LCS6oXYoK6V1FDzmdgAVpVsNOtz8TrnewBoKlSvxDkpJtSkN-LqZkyTG6fkZWuz74pD7Py-H3ZFDIUffNqdijHZIQefin4ojndxjPk0jHc-9_mNeBnsPvu3j--FuP329ff2h7z-9f3n9su1dBr0KLlqPFPtampRV2UZ2LENwKxdR7YrHbGmUHcUAnaVAl-3rtWNCtpbFYjVhfi49h5TfJh8Hs2hz87v93bwccoGy1IxVwoX9MMz9D5OaZh_t1DE1DBUM4Ur5VLMOflgjqk_2HQyCGZxa1a3ZnZrFrdGzZnLx-apPfjuKfFX5gzQCuR5NOx8-mf1f1rfr6Fgo7G71Gdze0OA5XItYiD1BxGVjJU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442928906</pqid></control><display><type>article</type><title>Structure-based modeling of energy transfer in photosynthesis</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Renger, Thomas ; Madjet, Mohamed El-Amine ; Schmidt am Busch, Marcel ; Adolphs, Julian ; Müh, Frank</creator><creatorcontrib>Renger, Thomas ; Madjet, Mohamed El-Amine ; Schmidt am Busch, Marcel ; Adolphs, Julian ; Müh, Frank</creatorcontrib><description>We provide a minimal model for a structure-based simulation of excitation energy transfer in pigment–protein complexes (PPCs). In our treatment, the PPC is assembled from its building blocks. The latter are defined such that electron exchange occurs only within, but not between these units. The variational principle is applied to investigate how the Coulomb interaction between building blocks changes the character of the electronic states of the PPC. In this way, the standard exciton Hamiltonian is obtained from first principles and a hierarchy of calculation schemes for the parameters of this Hamiltonian arises. Possible extensions of this approach are discussed concerning (i) the inclusion of dispersive site energy shifts and (ii) the inclusion of electron exchange between pigments. First results on electron exchange within the special pair of photosystem II of cyanobacteria and higher plants are presented and compared with earlier results on purple bacteria. In the last part of this mini-review, the coupling of electronic and nuclear degrees of freedom is considered. First, the standard exciton–vibrational Hamiltonian is parameterized with the help of a normal mode analysis of the PPC. Second, dynamical theories are discussed that exploit this Hamiltonian in the study of dissipative exciton motion.</description><identifier>ISSN: 0166-8595</identifier><identifier>EISSN: 1573-5079</identifier><identifier>DOI: 10.1007/s11120-013-9893-3</identifier><identifier>PMID: 23921525</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Cyanobacteria ; Electrons ; Energy Transfer ; Life Sciences ; Models, Biological ; Photobiology ; Photosynthesis ; photosystem II ; Pigments ; Plant Genetics and Genomics ; Plant Physiology ; Plant Sciences ; Proteins ; Proteobacteria ; Quantum Theory ; Review ; Thermodynamics</subject><ispartof>Photosynthesis research, 2013-10, Vol.116 (2-3), p.367-388</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-968e927c72b15644f9c9af0995cd2ad4c2952f7d2ff1d630e7bcb583f5ea3f293</citedby><cites>FETCH-LOGICAL-c505t-968e927c72b15644f9c9af0995cd2ad4c2952f7d2ff1d630e7bcb583f5ea3f293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11120-013-9893-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11120-013-9893-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23921525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Renger, Thomas</creatorcontrib><creatorcontrib>Madjet, Mohamed El-Amine</creatorcontrib><creatorcontrib>Schmidt am Busch, Marcel</creatorcontrib><creatorcontrib>Adolphs, Julian</creatorcontrib><creatorcontrib>Müh, Frank</creatorcontrib><title>Structure-based modeling of energy transfer in photosynthesis</title><title>Photosynthesis research</title><addtitle>Photosynth Res</addtitle><addtitle>Photosynth Res</addtitle><description>We provide a minimal model for a structure-based simulation of excitation energy transfer in pigment–protein complexes (PPCs). In our treatment, the PPC is assembled from its building blocks. The latter are defined such that electron exchange occurs only within, but not between these units. The variational principle is applied to investigate how the Coulomb interaction between building blocks changes the character of the electronic states of the PPC. In this way, the standard exciton Hamiltonian is obtained from first principles and a hierarchy of calculation schemes for the parameters of this Hamiltonian arises. Possible extensions of this approach are discussed concerning (i) the inclusion of dispersive site energy shifts and (ii) the inclusion of electron exchange between pigments. First results on electron exchange within the special pair of photosystem II of cyanobacteria and higher plants are presented and compared with earlier results on purple bacteria. In the last part of this mini-review, the coupling of electronic and nuclear degrees of freedom is considered. First, the standard exciton–vibrational Hamiltonian is parameterized with the help of a normal mode analysis of the PPC. Second, dynamical theories are discussed that exploit this Hamiltonian in the study of dissipative exciton motion.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cyanobacteria</subject><subject>Electrons</subject><subject>Energy Transfer</subject><subject>Life Sciences</subject><subject>Models, Biological</subject><subject>Photobiology</subject><subject>Photosynthesis</subject><subject>photosystem II</subject><subject>Pigments</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Proteins</subject><subject>Proteobacteria</subject><subject>Quantum Theory</subject><subject>Review</subject><subject>Thermodynamics</subject><issn>0166-8595</issn><issn>1573-5079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1v1DAQhi1URJfCD-BSInHhYpgZx0nm0ANa8SVV4lB6thzH3qbajbd2cth_T6KUCvXAyYd53nesZ4R4h_AJAerPGREJJKCS3LCS6oXYoK6V1FDzmdgAVpVsNOtz8TrnewBoKlSvxDkpJtSkN-LqZkyTG6fkZWuz74pD7Py-H3ZFDIUffNqdijHZIQefin4ojndxjPk0jHc-9_mNeBnsPvu3j--FuP329ff2h7z-9f3n9su1dBr0KLlqPFPtampRV2UZ2LENwKxdR7YrHbGmUHcUAnaVAl-3rtWNCtpbFYjVhfi49h5TfJh8Hs2hz87v93bwccoGy1IxVwoX9MMz9D5OaZh_t1DE1DBUM4Ur5VLMOflgjqk_2HQyCGZxa1a3ZnZrFrdGzZnLx-apPfjuKfFX5gzQCuR5NOx8-mf1f1rfr6Fgo7G71Gdze0OA5XItYiD1BxGVjJU</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Renger, Thomas</creator><creator>Madjet, Mohamed El-Amine</creator><creator>Schmidt am Busch, Marcel</creator><creator>Adolphs, Julian</creator><creator>Müh, Frank</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20131001</creationdate><title>Structure-based modeling of energy transfer in photosynthesis</title><author>Renger, Thomas ; Madjet, Mohamed El-Amine ; Schmidt am Busch, Marcel ; Adolphs, Julian ; Müh, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-968e927c72b15644f9c9af0995cd2ad4c2952f7d2ff1d630e7bcb583f5ea3f293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cyanobacteria</topic><topic>Electrons</topic><topic>Energy Transfer</topic><topic>Life Sciences</topic><topic>Models, Biological</topic><topic>Photobiology</topic><topic>Photosynthesis</topic><topic>photosystem II</topic><topic>Pigments</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Proteins</topic><topic>Proteobacteria</topic><topic>Quantum Theory</topic><topic>Review</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renger, Thomas</creatorcontrib><creatorcontrib>Madjet, Mohamed El-Amine</creatorcontrib><creatorcontrib>Schmidt am Busch, Marcel</creatorcontrib><creatorcontrib>Adolphs, Julian</creatorcontrib><creatorcontrib>Müh, Frank</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Photosynthesis research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renger, Thomas</au><au>Madjet, Mohamed El-Amine</au><au>Schmidt am Busch, Marcel</au><au>Adolphs, Julian</au><au>Müh, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure-based modeling of energy transfer in photosynthesis</atitle><jtitle>Photosynthesis research</jtitle><stitle>Photosynth Res</stitle><addtitle>Photosynth Res</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>116</volume><issue>2-3</issue><spage>367</spage><epage>388</epage><pages>367-388</pages><issn>0166-8595</issn><eissn>1573-5079</eissn><abstract>We provide a minimal model for a structure-based simulation of excitation energy transfer in pigment–protein complexes (PPCs). In our treatment, the PPC is assembled from its building blocks. The latter are defined such that electron exchange occurs only within, but not between these units. The variational principle is applied to investigate how the Coulomb interaction between building blocks changes the character of the electronic states of the PPC. In this way, the standard exciton Hamiltonian is obtained from first principles and a hierarchy of calculation schemes for the parameters of this Hamiltonian arises. Possible extensions of this approach are discussed concerning (i) the inclusion of dispersive site energy shifts and (ii) the inclusion of electron exchange between pigments. First results on electron exchange within the special pair of photosystem II of cyanobacteria and higher plants are presented and compared with earlier results on purple bacteria. In the last part of this mini-review, the coupling of electronic and nuclear degrees of freedom is considered. First, the standard exciton–vibrational Hamiltonian is parameterized with the help of a normal mode analysis of the PPC. Second, dynamical theories are discussed that exploit this Hamiltonian in the study of dissipative exciton motion.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><pmid>23921525</pmid><doi>10.1007/s11120-013-9893-3</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-8595 |
ispartof | Photosynthesis research, 2013-10, Vol.116 (2-3), p.367-388 |
issn | 0166-8595 1573-5079 |
language | eng |
recordid | cdi_proquest_miscellaneous_1443996319 |
source | MEDLINE; SpringerLink Journals |
subjects | Biochemistry Biomedical and Life Sciences Cyanobacteria Electrons Energy Transfer Life Sciences Models, Biological Photobiology Photosynthesis photosystem II Pigments Plant Genetics and Genomics Plant Physiology Plant Sciences Proteins Proteobacteria Quantum Theory Review Thermodynamics |
title | Structure-based modeling of energy transfer in photosynthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T06%3A52%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure-based%20modeling%20of%20energy%20transfer%20in%20photosynthesis&rft.jtitle=Photosynthesis%20research&rft.au=Renger,%20Thomas&rft.date=2013-10-01&rft.volume=116&rft.issue=2-3&rft.spage=367&rft.epage=388&rft.pages=367-388&rft.issn=0166-8595&rft.eissn=1573-5079&rft_id=info:doi/10.1007/s11120-013-9893-3&rft_dat=%3Cproquest_cross%3E3102733451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442928906&rft_id=info:pmid/23921525&rfr_iscdi=true |