proposed role for inorganic carbon in water oxidation

This is an article on the peroxydicarbonic acid (PODCA) hypothesis of photosynthetic water oxidation, which follows our first article in this general area (Castelfranco et al., Photosynth Res 94:235–246, 2007). In this article I have expanded on the idea of a protein-bound intermediate containing in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photosynthesis research 2013-10, Vol.116 (2-3), p.231-234
1. Verfasser: Castelfranco, Paul A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234
container_issue 2-3
container_start_page 231
container_title Photosynthesis research
container_volume 116
creator Castelfranco, Paul A
description This is an article on the peroxydicarbonic acid (PODCA) hypothesis of photosynthetic water oxidation, which follows our first article in this general area (Castelfranco et al., Photosynth Res 94:235–246, 2007). In this article I have expanded on the idea of a protein-bound intermediate containing inorganic carbon in some chemically bound form. PODCA is conceived in this article as constituting a bridge between two proteins of the oxygen-evolving complex (OEC) that are essential for the evolution of O₂. Presumably, these are two proteins which have been shown to possess Mn-dependent carbonic anhydrase activity (Lu et al., Plant Cell Physiol 46:1944–1953, 2005; Shitov et al., Biochemistry (Moscow) 74:509–517, 2009). One of these proteins may be the DI of the OEC core and the other may be the PsbO extrinsic protein. I attempt to relate briefly the PODCA hypothesis to the role of two cofactors for O₂ evolution: Ca²⁺ and inorganic carbon. In this scheme, inorganic carbon (HCO₃ ⁻) mediates the oxidation of peroxide to dioxygen, thus avoiding the homolytic cleavage of the peroxide into two free radicals. I visualize the role of Ca²⁺ in the binding of PODCA to two essential photosystem II proteins. I propose that PODCA alternates between two Phases. In Phase 1, PODCA is broken down with the production of O₂. In Phase 2, PODCA is regenerated.
doi_str_mv 10.1007/s11120-013-9864-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1443996155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A350791753</galeid><sourcerecordid>A350791753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-e52d3aacf37d6e76d48c31dfafbc41e1faead0f8c81f95f9818c3856345774d83</originalsourceid><addsrcrecordid>eNp9kk1rFTEUhoMo9lr9AW50wI0upuZMvpel-FEoCNauQ24-hpS5yTWZwfrvzTBVrAvJInDO8x7ekzcIvQR8BhiL9xUABtxjIL2SnPbyEdoBE6RnWKjHaIeB814yxU7Qs1pvMcaSA3mKTgYiBGOU7xA7lnzM1buu5Ml3IZcuplxGk6LtrCn7nFqh-2FmX7p8F52ZY07P0ZNgpupf3N-n6Objh28Xn_urL58uL86veku5mnvPBkeMsYEIx73gjkpLwAUT9paCh2C8cThIKyEoFpSE1peME8qEoE6SU_R2m9tcfl98nfUhVuunySSfl6qBUqIUB8Ya-uYf9DYvJTV3KzWoQUrJG3W2UaOZvI4p5LkY247zh2hz8iG2-jlZHxAEI03w7oGgMbO_m0ez1Kovr78-ZGFjbcm1Fh_0scSDKT81YL0GprfAdAtMr4HpdcNX97aX_cG7P4rfCTVg2IDaWmn05a-9_jP19SYKJmszllj1zfWAga5fYJBKkF9Enqdc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442928886</pqid></control><display><type>article</type><title>proposed role for inorganic carbon in water oxidation</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Castelfranco, Paul A</creator><creatorcontrib>Castelfranco, Paul A</creatorcontrib><description>This is an article on the peroxydicarbonic acid (PODCA) hypothesis of photosynthetic water oxidation, which follows our first article in this general area (Castelfranco et al., Photosynth Res 94:235–246, 2007). In this article I have expanded on the idea of a protein-bound intermediate containing inorganic carbon in some chemically bound form. PODCA is conceived in this article as constituting a bridge between two proteins of the oxygen-evolving complex (OEC) that are essential for the evolution of O₂. Presumably, these are two proteins which have been shown to possess Mn-dependent carbonic anhydrase activity (Lu et al., Plant Cell Physiol 46:1944–1953, 2005; Shitov et al., Biochemistry (Moscow) 74:509–517, 2009). One of these proteins may be the DI of the OEC core and the other may be the PsbO extrinsic protein. I attempt to relate briefly the PODCA hypothesis to the role of two cofactors for O₂ evolution: Ca²⁺ and inorganic carbon. In this scheme, inorganic carbon (HCO₃ ⁻) mediates the oxidation of peroxide to dioxygen, thus avoiding the homolytic cleavage of the peroxide into two free radicals. I visualize the role of Ca²⁺ in the binding of PODCA to two essential photosystem II proteins. I propose that PODCA alternates between two Phases. In Phase 1, PODCA is broken down with the production of O₂. In Phase 2, PODCA is regenerated.</description><identifier>ISSN: 0166-8595</identifier><identifier>EISSN: 1573-5079</identifier><identifier>DOI: 10.1007/s11120-013-9864-8</identifier><identifier>PMID: 23775546</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; calcium ; carbon ; Carbon - metabolism ; Carbon Radioisotopes ; carbonate dehydratase ; Carbonates ; Carbonic Acid - metabolism ; Chemical properties ; free radicals ; Life Sciences ; Models, Biological ; Oxidation ; Oxidation-Reduction ; Oxidation-reduction reaction ; Oxygen ; Photochemistry ; Photosynthesis ; photosystem II ; Photosystem II Protein Complex - metabolism ; Plant Genetics and Genomics ; Plant Physiology ; Plant Sciences ; Protein binding ; Proteins ; Review ; Water - metabolism</subject><ispartof>Photosynthesis research, 2013-10, Vol.116 (2-3), p.231-234</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-e52d3aacf37d6e76d48c31dfafbc41e1faead0f8c81f95f9818c3856345774d83</citedby><cites>FETCH-LOGICAL-c469t-e52d3aacf37d6e76d48c31dfafbc41e1faead0f8c81f95f9818c3856345774d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11120-013-9864-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11120-013-9864-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23775546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Castelfranco, Paul A</creatorcontrib><title>proposed role for inorganic carbon in water oxidation</title><title>Photosynthesis research</title><addtitle>Photosynth Res</addtitle><addtitle>Photosynth Res</addtitle><description>This is an article on the peroxydicarbonic acid (PODCA) hypothesis of photosynthetic water oxidation, which follows our first article in this general area (Castelfranco et al., Photosynth Res 94:235–246, 2007). In this article I have expanded on the idea of a protein-bound intermediate containing inorganic carbon in some chemically bound form. PODCA is conceived in this article as constituting a bridge between two proteins of the oxygen-evolving complex (OEC) that are essential for the evolution of O₂. Presumably, these are two proteins which have been shown to possess Mn-dependent carbonic anhydrase activity (Lu et al., Plant Cell Physiol 46:1944–1953, 2005; Shitov et al., Biochemistry (Moscow) 74:509–517, 2009). One of these proteins may be the DI of the OEC core and the other may be the PsbO extrinsic protein. I attempt to relate briefly the PODCA hypothesis to the role of two cofactors for O₂ evolution: Ca²⁺ and inorganic carbon. In this scheme, inorganic carbon (HCO₃ ⁻) mediates the oxidation of peroxide to dioxygen, thus avoiding the homolytic cleavage of the peroxide into two free radicals. I visualize the role of Ca²⁺ in the binding of PODCA to two essential photosystem II proteins. I propose that PODCA alternates between two Phases. In Phase 1, PODCA is broken down with the production of O₂. In Phase 2, PODCA is regenerated.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>calcium</subject><subject>carbon</subject><subject>Carbon - metabolism</subject><subject>Carbon Radioisotopes</subject><subject>carbonate dehydratase</subject><subject>Carbonates</subject><subject>Carbonic Acid - metabolism</subject><subject>Chemical properties</subject><subject>free radicals</subject><subject>Life Sciences</subject><subject>Models, Biological</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidation-reduction reaction</subject><subject>Oxygen</subject><subject>Photochemistry</subject><subject>Photosynthesis</subject><subject>photosystem II</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Protein binding</subject><subject>Proteins</subject><subject>Review</subject><subject>Water - metabolism</subject><issn>0166-8595</issn><issn>1573-5079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kk1rFTEUhoMo9lr9AW50wI0upuZMvpel-FEoCNauQ24-hpS5yTWZwfrvzTBVrAvJInDO8x7ekzcIvQR8BhiL9xUABtxjIL2SnPbyEdoBE6RnWKjHaIeB814yxU7Qs1pvMcaSA3mKTgYiBGOU7xA7lnzM1buu5Ml3IZcuplxGk6LtrCn7nFqh-2FmX7p8F52ZY07P0ZNgpupf3N-n6Objh28Xn_urL58uL86veku5mnvPBkeMsYEIx73gjkpLwAUT9paCh2C8cThIKyEoFpSE1peME8qEoE6SU_R2m9tcfl98nfUhVuunySSfl6qBUqIUB8Ya-uYf9DYvJTV3KzWoQUrJG3W2UaOZvI4p5LkY247zh2hz8iG2-jlZHxAEI03w7oGgMbO_m0ez1Kovr78-ZGFjbcm1Fh_0scSDKT81YL0GprfAdAtMr4HpdcNX97aX_cG7P4rfCTVg2IDaWmn05a-9_jP19SYKJmszllj1zfWAga5fYJBKkF9Enqdc</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Castelfranco, Paul A</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20131001</creationdate><title>proposed role for inorganic carbon in water oxidation</title><author>Castelfranco, Paul A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-e52d3aacf37d6e76d48c31dfafbc41e1faead0f8c81f95f9818c3856345774d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>calcium</topic><topic>carbon</topic><topic>Carbon - metabolism</topic><topic>Carbon Radioisotopes</topic><topic>carbonate dehydratase</topic><topic>Carbonates</topic><topic>Carbonic Acid - metabolism</topic><topic>Chemical properties</topic><topic>free radicals</topic><topic>Life Sciences</topic><topic>Models, Biological</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidation-reduction reaction</topic><topic>Oxygen</topic><topic>Photochemistry</topic><topic>Photosynthesis</topic><topic>photosystem II</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Protein binding</topic><topic>Proteins</topic><topic>Review</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castelfranco, Paul A</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Photosynthesis research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castelfranco, Paul A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>proposed role for inorganic carbon in water oxidation</atitle><jtitle>Photosynthesis research</jtitle><stitle>Photosynth Res</stitle><addtitle>Photosynth Res</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>116</volume><issue>2-3</issue><spage>231</spage><epage>234</epage><pages>231-234</pages><issn>0166-8595</issn><eissn>1573-5079</eissn><abstract>This is an article on the peroxydicarbonic acid (PODCA) hypothesis of photosynthetic water oxidation, which follows our first article in this general area (Castelfranco et al., Photosynth Res 94:235–246, 2007). In this article I have expanded on the idea of a protein-bound intermediate containing inorganic carbon in some chemically bound form. PODCA is conceived in this article as constituting a bridge between two proteins of the oxygen-evolving complex (OEC) that are essential for the evolution of O₂. Presumably, these are two proteins which have been shown to possess Mn-dependent carbonic anhydrase activity (Lu et al., Plant Cell Physiol 46:1944–1953, 2005; Shitov et al., Biochemistry (Moscow) 74:509–517, 2009). One of these proteins may be the DI of the OEC core and the other may be the PsbO extrinsic protein. I attempt to relate briefly the PODCA hypothesis to the role of two cofactors for O₂ evolution: Ca²⁺ and inorganic carbon. In this scheme, inorganic carbon (HCO₃ ⁻) mediates the oxidation of peroxide to dioxygen, thus avoiding the homolytic cleavage of the peroxide into two free radicals. I visualize the role of Ca²⁺ in the binding of PODCA to two essential photosystem II proteins. I propose that PODCA alternates between two Phases. In Phase 1, PODCA is broken down with the production of O₂. In Phase 2, PODCA is regenerated.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><pmid>23775546</pmid><doi>10.1007/s11120-013-9864-8</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0166-8595
ispartof Photosynthesis research, 2013-10, Vol.116 (2-3), p.231-234
issn 0166-8595
1573-5079
language eng
recordid cdi_proquest_miscellaneous_1443996155
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Biochemistry
Biomedical and Life Sciences
calcium
carbon
Carbon - metabolism
Carbon Radioisotopes
carbonate dehydratase
Carbonates
Carbonic Acid - metabolism
Chemical properties
free radicals
Life Sciences
Models, Biological
Oxidation
Oxidation-Reduction
Oxidation-reduction reaction
Oxygen
Photochemistry
Photosynthesis
photosystem II
Photosystem II Protein Complex - metabolism
Plant Genetics and Genomics
Plant Physiology
Plant Sciences
Protein binding
Proteins
Review
Water - metabolism
title proposed role for inorganic carbon in water oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T13%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=proposed%20role%20for%20inorganic%20carbon%20in%20water%20oxidation&rft.jtitle=Photosynthesis%20research&rft.au=Castelfranco,%20Paul%20A&rft.date=2013-10-01&rft.volume=116&rft.issue=2-3&rft.spage=231&rft.epage=234&rft.pages=231-234&rft.issn=0166-8595&rft.eissn=1573-5079&rft_id=info:doi/10.1007/s11120-013-9864-8&rft_dat=%3Cgale_proqu%3EA350791753%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442928886&rft_id=info:pmid/23775546&rft_galeid=A350791753&rfr_iscdi=true