GALAMOST: GPU-accelerated large-scale molecular simulation toolkit

GALAMOST [graphics processing unit (GPU)‐accelerated large‐scale molecular simulation toolkit] is a molecular simulation package designed to utilize the computational power of GPUs. Besides the common features of molecular dynamics (MD) packages, it is developed specially for the studies of self‐ass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2013-09, Vol.34 (25), p.2197-2211
Hauptverfasser: Zhu, You-Liang, Liu, Hong, Li, Zhan-Wei, Qian, Hu-Jun, Milano, Giuseppe, Lu, Zhong-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2211
container_issue 25
container_start_page 2197
container_title Journal of computational chemistry
container_volume 34
creator Zhu, You-Liang
Liu, Hong
Li, Zhan-Wei
Qian, Hu-Jun
Milano, Giuseppe
Lu, Zhong-Yuan
description GALAMOST [graphics processing unit (GPU)‐accelerated large‐scale molecular simulation toolkit] is a molecular simulation package designed to utilize the computational power of GPUs. Besides the common features of molecular dynamics (MD) packages, it is developed specially for the studies of self‐assembly, phase transition, and other properties of polymeric systems at mesoscopic scale by using some lately developed simulation techniques. To accelerate the simulations, GALAMOST contains a hybrid particle‐field MD technique where particle–particle interactions are replaced by interactions of particles with density fields. Moreover, the numerical potential obtained by bottom‐up coarse‐graining methods can be implemented in simulations with GALAMOST. By combining these force fields and particle‐density coupling method in GALAMOST, the simulations for polymers can be performed with very large system sizes over long simulation time. In addition, GALAMOST encompasses two specific models, that is, a soft anisotropic particle model and a chain‐growth polymerization model, by which the hierarchical self‐assembly of soft anisotropic particles and the problems related to polymerization can be studied, respectively. The optimized algorithms implemented on the GPU, package characteristics, and benchmarks of GALAMOST are reported in detail. © 2013 Wiley Periodicals, Inc. A new molecular simulation toolkit composed of recently developed force fields and specified models is presented to study the self‐assembly, phase transition, and other properties of polymeric systems at the mesoscopic scale by using the computational power of graphics processing units. The hierarchical self‐assembly of soft anisotropic particles and the problems related to polymerization can be studied by corresponding models included in this toolkit.
doi_str_mv 10.1002/jcc.23365
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1443420467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1443420467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4925-aec06cadd9b007cbfc30b75b3e6de1a61f89f5ba6e0075daa83e92c65bce2a13</originalsourceid><addsrcrecordid>eNp10E1LwzAYB_Agis7pwS8gBS966Mx7W29z6qbMF3Ay8RLS9Kl0tutMWtRvb3S6g-ApkPyeP0_-CO0R3CMY0-OZMT3KmBRrqENwIsMkjh7XUQeThIaxFGQLbTs3wxgzIfkm2qKcsEjKuINOh_1x__r2fnISDO8eQm0MlGB1A1lQavsMoTO6hKCqSzCtvwlcUfmzKep50NR1-VI0O2gj16WD3Z-ziyYX55PBKBzfDi8H_XFoeEJFqMFgaXSWJSnGkUlzw3AaiZSBzIBoSfI4yUWqJfhnkWkdM0iokSI1QDVhXXS4jF3Y-rUF16iqcH7bUs-hbp0inDNOMZeRpwd_6Kxu7dwv5xWNCZfeeXW0VMbWzlnI1cIWlbYfimD11avyvarvXr3d_0ls0wqylfwt0oPjJXgrSvj4P0ldDQa_keFyonANvK8mtH1R_guRUNOboRo9TfkkPovUiH0CYk6PyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1428146204</pqid></control><display><type>article</type><title>GALAMOST: GPU-accelerated large-scale molecular simulation toolkit</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Zhu, You-Liang ; Liu, Hong ; Li, Zhan-Wei ; Qian, Hu-Jun ; Milano, Giuseppe ; Lu, Zhong-Yuan</creator><creatorcontrib>Zhu, You-Liang ; Liu, Hong ; Li, Zhan-Wei ; Qian, Hu-Jun ; Milano, Giuseppe ; Lu, Zhong-Yuan</creatorcontrib><description>GALAMOST [graphics processing unit (GPU)‐accelerated large‐scale molecular simulation toolkit] is a molecular simulation package designed to utilize the computational power of GPUs. Besides the common features of molecular dynamics (MD) packages, it is developed specially for the studies of self‐assembly, phase transition, and other properties of polymeric systems at mesoscopic scale by using some lately developed simulation techniques. To accelerate the simulations, GALAMOST contains a hybrid particle‐field MD technique where particle–particle interactions are replaced by interactions of particles with density fields. Moreover, the numerical potential obtained by bottom‐up coarse‐graining methods can be implemented in simulations with GALAMOST. By combining these force fields and particle‐density coupling method in GALAMOST, the simulations for polymers can be performed with very large system sizes over long simulation time. In addition, GALAMOST encompasses two specific models, that is, a soft anisotropic particle model and a chain‐growth polymerization model, by which the hierarchical self‐assembly of soft anisotropic particles and the problems related to polymerization can be studied, respectively. The optimized algorithms implemented on the GPU, package characteristics, and benchmarks of GALAMOST are reported in detail. © 2013 Wiley Periodicals, Inc. A new molecular simulation toolkit composed of recently developed force fields and specified models is presented to study the self‐assembly, phase transition, and other properties of polymeric systems at the mesoscopic scale by using the computational power of graphics processing units. The hierarchical self‐assembly of soft anisotropic particles and the problems related to polymerization can be studied by corresponding models included in this toolkit.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.23365</identifier><identifier>PMID: 24137668</identifier><identifier>CODEN: JCCHDD</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>1,2-Dipalmitoylphosphatidylcholine - chemistry ; Charged particles ; Computer Graphics ; Density ; Models, Molecular ; Molecular Dynamics Simulation - standards ; Molecular structure ; Particle Size ; Polymerization ; Polymers ; Polymers - chemistry ; polymers MD GPU anisotropic particles polymerization</subject><ispartof>Journal of computational chemistry, 2013-09, Vol.34 (25), p.2197-2211</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><rights>2013 Wiley Periodicals, Inc.</rights><rights>Copyright Wiley Subscription Services, Inc. Sep 30, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4925-aec06cadd9b007cbfc30b75b3e6de1a61f89f5ba6e0075daa83e92c65bce2a13</citedby><cites>FETCH-LOGICAL-c4925-aec06cadd9b007cbfc30b75b3e6de1a61f89f5ba6e0075daa83e92c65bce2a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.23365$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.23365$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24137668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, You-Liang</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Li, Zhan-Wei</creatorcontrib><creatorcontrib>Qian, Hu-Jun</creatorcontrib><creatorcontrib>Milano, Giuseppe</creatorcontrib><creatorcontrib>Lu, Zhong-Yuan</creatorcontrib><title>GALAMOST: GPU-accelerated large-scale molecular simulation toolkit</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>GALAMOST [graphics processing unit (GPU)‐accelerated large‐scale molecular simulation toolkit] is a molecular simulation package designed to utilize the computational power of GPUs. Besides the common features of molecular dynamics (MD) packages, it is developed specially for the studies of self‐assembly, phase transition, and other properties of polymeric systems at mesoscopic scale by using some lately developed simulation techniques. To accelerate the simulations, GALAMOST contains a hybrid particle‐field MD technique where particle–particle interactions are replaced by interactions of particles with density fields. Moreover, the numerical potential obtained by bottom‐up coarse‐graining methods can be implemented in simulations with GALAMOST. By combining these force fields and particle‐density coupling method in GALAMOST, the simulations for polymers can be performed with very large system sizes over long simulation time. In addition, GALAMOST encompasses two specific models, that is, a soft anisotropic particle model and a chain‐growth polymerization model, by which the hierarchical self‐assembly of soft anisotropic particles and the problems related to polymerization can be studied, respectively. The optimized algorithms implemented on the GPU, package characteristics, and benchmarks of GALAMOST are reported in detail. © 2013 Wiley Periodicals, Inc. A new molecular simulation toolkit composed of recently developed force fields and specified models is presented to study the self‐assembly, phase transition, and other properties of polymeric systems at the mesoscopic scale by using the computational power of graphics processing units. The hierarchical self‐assembly of soft anisotropic particles and the problems related to polymerization can be studied by corresponding models included in this toolkit.</description><subject>1,2-Dipalmitoylphosphatidylcholine - chemistry</subject><subject>Charged particles</subject><subject>Computer Graphics</subject><subject>Density</subject><subject>Models, Molecular</subject><subject>Molecular Dynamics Simulation - standards</subject><subject>Molecular structure</subject><subject>Particle Size</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>polymers MD GPU anisotropic particles polymerization</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1LwzAYB_Agis7pwS8gBS966Mx7W29z6qbMF3Ay8RLS9Kl0tutMWtRvb3S6g-ApkPyeP0_-CO0R3CMY0-OZMT3KmBRrqENwIsMkjh7XUQeThIaxFGQLbTs3wxgzIfkm2qKcsEjKuINOh_1x__r2fnISDO8eQm0MlGB1A1lQavsMoTO6hKCqSzCtvwlcUfmzKep50NR1-VI0O2gj16WD3Z-ziyYX55PBKBzfDi8H_XFoeEJFqMFgaXSWJSnGkUlzw3AaiZSBzIBoSfI4yUWqJfhnkWkdM0iokSI1QDVhXXS4jF3Y-rUF16iqcH7bUs-hbp0inDNOMZeRpwd_6Kxu7dwv5xWNCZfeeXW0VMbWzlnI1cIWlbYfimD11avyvarvXr3d_0ls0wqylfwt0oPjJXgrSvj4P0ldDQa_keFyonANvK8mtH1R_guRUNOboRo9TfkkPovUiH0CYk6PyA</recordid><startdate>20130930</startdate><enddate>20130930</enddate><creator>Zhu, You-Liang</creator><creator>Liu, Hong</creator><creator>Li, Zhan-Wei</creator><creator>Qian, Hu-Jun</creator><creator>Milano, Giuseppe</creator><creator>Lu, Zhong-Yuan</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope></search><sort><creationdate>20130930</creationdate><title>GALAMOST: GPU-accelerated large-scale molecular simulation toolkit</title><author>Zhu, You-Liang ; Liu, Hong ; Li, Zhan-Wei ; Qian, Hu-Jun ; Milano, Giuseppe ; Lu, Zhong-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4925-aec06cadd9b007cbfc30b75b3e6de1a61f89f5ba6e0075daa83e92c65bce2a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>1,2-Dipalmitoylphosphatidylcholine - chemistry</topic><topic>Charged particles</topic><topic>Computer Graphics</topic><topic>Density</topic><topic>Models, Molecular</topic><topic>Molecular Dynamics Simulation - standards</topic><topic>Molecular structure</topic><topic>Particle Size</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>polymers MD GPU anisotropic particles polymerization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, You-Liang</creatorcontrib><creatorcontrib>Liu, Hong</creatorcontrib><creatorcontrib>Li, Zhan-Wei</creatorcontrib><creatorcontrib>Qian, Hu-Jun</creatorcontrib><creatorcontrib>Milano, Giuseppe</creatorcontrib><creatorcontrib>Lu, Zhong-Yuan</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, You-Liang</au><au>Liu, Hong</au><au>Li, Zhan-Wei</au><au>Qian, Hu-Jun</au><au>Milano, Giuseppe</au><au>Lu, Zhong-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GALAMOST: GPU-accelerated large-scale molecular simulation toolkit</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>2013-09-30</date><risdate>2013</risdate><volume>34</volume><issue>25</issue><spage>2197</spage><epage>2211</epage><pages>2197-2211</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><coden>JCCHDD</coden><abstract>GALAMOST [graphics processing unit (GPU)‐accelerated large‐scale molecular simulation toolkit] is a molecular simulation package designed to utilize the computational power of GPUs. Besides the common features of molecular dynamics (MD) packages, it is developed specially for the studies of self‐assembly, phase transition, and other properties of polymeric systems at mesoscopic scale by using some lately developed simulation techniques. To accelerate the simulations, GALAMOST contains a hybrid particle‐field MD technique where particle–particle interactions are replaced by interactions of particles with density fields. Moreover, the numerical potential obtained by bottom‐up coarse‐graining methods can be implemented in simulations with GALAMOST. By combining these force fields and particle‐density coupling method in GALAMOST, the simulations for polymers can be performed with very large system sizes over long simulation time. In addition, GALAMOST encompasses two specific models, that is, a soft anisotropic particle model and a chain‐growth polymerization model, by which the hierarchical self‐assembly of soft anisotropic particles and the problems related to polymerization can be studied, respectively. The optimized algorithms implemented on the GPU, package characteristics, and benchmarks of GALAMOST are reported in detail. © 2013 Wiley Periodicals, Inc. A new molecular simulation toolkit composed of recently developed force fields and specified models is presented to study the self‐assembly, phase transition, and other properties of polymeric systems at the mesoscopic scale by using the computational power of graphics processing units. The hierarchical self‐assembly of soft anisotropic particles and the problems related to polymerization can be studied by corresponding models included in this toolkit.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24137668</pmid><doi>10.1002/jcc.23365</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2013-09, Vol.34 (25), p.2197-2211
issn 0192-8651
1096-987X
language eng
recordid cdi_proquest_miscellaneous_1443420467
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects 1,2-Dipalmitoylphosphatidylcholine - chemistry
Charged particles
Computer Graphics
Density
Models, Molecular
Molecular Dynamics Simulation - standards
Molecular structure
Particle Size
Polymerization
Polymers
Polymers - chemistry
polymers MD GPU anisotropic particles polymerization
title GALAMOST: GPU-accelerated large-scale molecular simulation toolkit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T20%3A48%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GALAMOST:%20GPU-accelerated%20large-scale%20molecular%20simulation%20toolkit&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Zhu,%20You-Liang&rft.date=2013-09-30&rft.volume=34&rft.issue=25&rft.spage=2197&rft.epage=2211&rft.pages=2197-2211&rft.issn=0192-8651&rft.eissn=1096-987X&rft.coden=JCCHDD&rft_id=info:doi/10.1002/jcc.23365&rft_dat=%3Cproquest_cross%3E1443420467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1428146204&rft_id=info:pmid/24137668&rfr_iscdi=true