Homogeneous Ice Nucleation at Moderate Supercooling from Molecular Simulation
Among all of the freezing transitions, that of water into ice is probably the most relevant to biology, physics, geology, or atmospheric science. In this work, we investigate homogeneous ice nucleation by means of computer simulations. We evaluate the size of the critical cluster and the nucleation...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2013-10, Vol.135 (40), p.15008-15017 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15017 |
---|---|
container_issue | 40 |
container_start_page | 15008 |
container_title | Journal of the American Chemical Society |
container_volume | 135 |
creator | Sanz, E Vega, C Espinosa, J. R Caballero-Bernal, R Abascal, J. L. F Valeriani, C |
description | Among all of the freezing transitions, that of water into ice is probably the most relevant to biology, physics, geology, or atmospheric science. In this work, we investigate homogeneous ice nucleation by means of computer simulations. We evaluate the size of the critical cluster and the nucleation rate for temperatures ranging between 15 and 35 K below melting. We use the TIP4P/2005 and the TIP4P/ice water models. Both give similar results when compared at the same temperature difference with the model’s melting temperature. The size of the critical cluster varies from ∼8000 molecules (radius = 4 nm) at 15 K below melting to ∼600 molecules (radius = 1.7 nm) at 35 K below melting. We use Classical Nucleation Theory (CNT) to estimate the ice–water interfacial free energy and the nucleation free-energy barrier. We obtain an interfacial free energy of 29(3) mN/m from an extrapolation of our results to the melting temperature. This value is in good agreement both with experimental measurements and with previous estimates from computer simulations of TIP4P-like models. Moreover, we obtain estimates of the nucleation rate from simulations of the critical cluster at the barrier top. The values we get for both models agree within statistical error with experimental measurements. At temperatures higher than 20 K below melting, we get nucleation rates slower than the appearance of a critical cluster in all water of the hydrosphere during the age of the universe. Therefore, our simulations predict that water freezing above this temperature must necessarily be heterogeneous. |
doi_str_mv | 10.1021/ja4028814 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1443416077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1443416077</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-3321fce9ad8566cb9c2cb5708c75575f1b4174630d47d91a124092f91a76179e3</originalsourceid><addsrcrecordid>eNptkD9PwzAQxS0EoqUw8AVQFiQYAj7_iZ0RVUArtTAU5shxnCpVEhc7Hvj2uLR0Yro73e-e7j2ErgE_ACbwuFEMEymBnaAxcIJTDiQ7RWOMMUmFzOgIXXi_iSMjEs7RiDAMmEs6RsuZ7eza9MYGn8y1Sd6Cbo0aGtsnakiWtjJODSZZha1x2tq26ddJ7WwXV63RoVUuWTVdrLuTS3RWq9abq0OdoM-X54_pLF28v86nT4tUUQlDSimBWptcVZJnmS5zTXTJBZZacC54DSUDwTKKKyaqHBTEf3NSx05kIHJDJ-hur7t19isYPxRd47VpW_VrpADGKIMMCxHR-z2qnfXembrYuqZT7rsAXOzSK47pRfbmIBvKzlRH8i-uCNzuAaV9sbHB9dHlP0I_LVt0UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443416077</pqid></control><display><type>article</type><title>Homogeneous Ice Nucleation at Moderate Supercooling from Molecular Simulation</title><source>ACS Publications</source><creator>Sanz, E ; Vega, C ; Espinosa, J. R ; Caballero-Bernal, R ; Abascal, J. L. F ; Valeriani, C</creator><creatorcontrib>Sanz, E ; Vega, C ; Espinosa, J. R ; Caballero-Bernal, R ; Abascal, J. L. F ; Valeriani, C</creatorcontrib><description>Among all of the freezing transitions, that of water into ice is probably the most relevant to biology, physics, geology, or atmospheric science. In this work, we investigate homogeneous ice nucleation by means of computer simulations. We evaluate the size of the critical cluster and the nucleation rate for temperatures ranging between 15 and 35 K below melting. We use the TIP4P/2005 and the TIP4P/ice water models. Both give similar results when compared at the same temperature difference with the model’s melting temperature. The size of the critical cluster varies from ∼8000 molecules (radius = 4 nm) at 15 K below melting to ∼600 molecules (radius = 1.7 nm) at 35 K below melting. We use Classical Nucleation Theory (CNT) to estimate the ice–water interfacial free energy and the nucleation free-energy barrier. We obtain an interfacial free energy of 29(3) mN/m from an extrapolation of our results to the melting temperature. This value is in good agreement both with experimental measurements and with previous estimates from computer simulations of TIP4P-like models. Moreover, we obtain estimates of the nucleation rate from simulations of the critical cluster at the barrier top. The values we get for both models agree within statistical error with experimental measurements. At temperatures higher than 20 K below melting, we get nucleation rates slower than the appearance of a critical cluster in all water of the hydrosphere during the age of the universe. Therefore, our simulations predict that water freezing above this temperature must necessarily be heterogeneous.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja4028814</identifier><identifier>PMID: 24010583</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2013-10, Vol.135 (40), p.15008-15017</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-3321fce9ad8566cb9c2cb5708c75575f1b4174630d47d91a124092f91a76179e3</citedby><cites>FETCH-LOGICAL-a381t-3321fce9ad8566cb9c2cb5708c75575f1b4174630d47d91a124092f91a76179e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja4028814$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja4028814$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,56745,56795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24010583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanz, E</creatorcontrib><creatorcontrib>Vega, C</creatorcontrib><creatorcontrib>Espinosa, J. R</creatorcontrib><creatorcontrib>Caballero-Bernal, R</creatorcontrib><creatorcontrib>Abascal, J. L. F</creatorcontrib><creatorcontrib>Valeriani, C</creatorcontrib><title>Homogeneous Ice Nucleation at Moderate Supercooling from Molecular Simulation</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Among all of the freezing transitions, that of water into ice is probably the most relevant to biology, physics, geology, or atmospheric science. In this work, we investigate homogeneous ice nucleation by means of computer simulations. We evaluate the size of the critical cluster and the nucleation rate for temperatures ranging between 15 and 35 K below melting. We use the TIP4P/2005 and the TIP4P/ice water models. Both give similar results when compared at the same temperature difference with the model’s melting temperature. The size of the critical cluster varies from ∼8000 molecules (radius = 4 nm) at 15 K below melting to ∼600 molecules (radius = 1.7 nm) at 35 K below melting. We use Classical Nucleation Theory (CNT) to estimate the ice–water interfacial free energy and the nucleation free-energy barrier. We obtain an interfacial free energy of 29(3) mN/m from an extrapolation of our results to the melting temperature. This value is in good agreement both with experimental measurements and with previous estimates from computer simulations of TIP4P-like models. Moreover, we obtain estimates of the nucleation rate from simulations of the critical cluster at the barrier top. The values we get for both models agree within statistical error with experimental measurements. At temperatures higher than 20 K below melting, we get nucleation rates slower than the appearance of a critical cluster in all water of the hydrosphere during the age of the universe. Therefore, our simulations predict that water freezing above this temperature must necessarily be heterogeneous.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkD9PwzAQxS0EoqUw8AVQFiQYAj7_iZ0RVUArtTAU5shxnCpVEhc7Hvj2uLR0Yro73e-e7j2ErgE_ACbwuFEMEymBnaAxcIJTDiQ7RWOMMUmFzOgIXXi_iSMjEs7RiDAMmEs6RsuZ7eza9MYGn8y1Sd6Cbo0aGtsnakiWtjJODSZZha1x2tq26ddJ7WwXV63RoVUuWTVdrLuTS3RWq9abq0OdoM-X54_pLF28v86nT4tUUQlDSimBWptcVZJnmS5zTXTJBZZacC54DSUDwTKKKyaqHBTEf3NSx05kIHJDJ-hur7t19isYPxRd47VpW_VrpADGKIMMCxHR-z2qnfXembrYuqZT7rsAXOzSK47pRfbmIBvKzlRH8i-uCNzuAaV9sbHB9dHlP0I_LVt0UQ</recordid><startdate>20131009</startdate><enddate>20131009</enddate><creator>Sanz, E</creator><creator>Vega, C</creator><creator>Espinosa, J. R</creator><creator>Caballero-Bernal, R</creator><creator>Abascal, J. L. F</creator><creator>Valeriani, C</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20131009</creationdate><title>Homogeneous Ice Nucleation at Moderate Supercooling from Molecular Simulation</title><author>Sanz, E ; Vega, C ; Espinosa, J. R ; Caballero-Bernal, R ; Abascal, J. L. F ; Valeriani, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-3321fce9ad8566cb9c2cb5708c75575f1b4174630d47d91a124092f91a76179e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanz, E</creatorcontrib><creatorcontrib>Vega, C</creatorcontrib><creatorcontrib>Espinosa, J. R</creatorcontrib><creatorcontrib>Caballero-Bernal, R</creatorcontrib><creatorcontrib>Abascal, J. L. F</creatorcontrib><creatorcontrib>Valeriani, C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanz, E</au><au>Vega, C</au><au>Espinosa, J. R</au><au>Caballero-Bernal, R</au><au>Abascal, J. L. F</au><au>Valeriani, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homogeneous Ice Nucleation at Moderate Supercooling from Molecular Simulation</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2013-10-09</date><risdate>2013</risdate><volume>135</volume><issue>40</issue><spage>15008</spage><epage>15017</epage><pages>15008-15017</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Among all of the freezing transitions, that of water into ice is probably the most relevant to biology, physics, geology, or atmospheric science. In this work, we investigate homogeneous ice nucleation by means of computer simulations. We evaluate the size of the critical cluster and the nucleation rate for temperatures ranging between 15 and 35 K below melting. We use the TIP4P/2005 and the TIP4P/ice water models. Both give similar results when compared at the same temperature difference with the model’s melting temperature. The size of the critical cluster varies from ∼8000 molecules (radius = 4 nm) at 15 K below melting to ∼600 molecules (radius = 1.7 nm) at 35 K below melting. We use Classical Nucleation Theory (CNT) to estimate the ice–water interfacial free energy and the nucleation free-energy barrier. We obtain an interfacial free energy of 29(3) mN/m from an extrapolation of our results to the melting temperature. This value is in good agreement both with experimental measurements and with previous estimates from computer simulations of TIP4P-like models. Moreover, we obtain estimates of the nucleation rate from simulations of the critical cluster at the barrier top. The values we get for both models agree within statistical error with experimental measurements. At temperatures higher than 20 K below melting, we get nucleation rates slower than the appearance of a critical cluster in all water of the hydrosphere during the age of the universe. Therefore, our simulations predict that water freezing above this temperature must necessarily be heterogeneous.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24010583</pmid><doi>10.1021/ja4028814</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2013-10, Vol.135 (40), p.15008-15017 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_1443416077 |
source | ACS Publications |
title | Homogeneous Ice Nucleation at Moderate Supercooling from Molecular Simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T08%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homogeneous%20Ice%20Nucleation%20at%20Moderate%20Supercooling%20from%20Molecular%20Simulation&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Sanz,%20E&rft.date=2013-10-09&rft.volume=135&rft.issue=40&rft.spage=15008&rft.epage=15017&rft.pages=15008-15017&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja4028814&rft_dat=%3Cproquest_cross%3E1443416077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443416077&rft_id=info:pmid/24010583&rfr_iscdi=true |