Biomineralization Mechanisms: A New Paradigm for Crystal Nucleation in Organic Matrices
There is substantial practical interest in the mechanism by which the carbonated apatite of bone mineral can be initiated specifically in a matrix. The current literature is replete with studies aimed at mimicking the properties of vertebrate bone, teeth, and other hard tissues by creating organic m...
Gespeichert in:
Veröffentlicht in: | Calcified tissue international 2013-10, Vol.93 (4), p.307-315 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 315 |
---|---|
container_issue | 4 |
container_start_page | 307 |
container_title | Calcified tissue international |
container_volume | 93 |
creator | Veis, Arthur Dorvee, Jason R. |
description | There is substantial practical interest in the mechanism by which the carbonated apatite of bone mineral can be initiated specifically in a matrix. The current literature is replete with studies aimed at mimicking the properties of vertebrate bone, teeth, and other hard tissues by creating organic matrices that can be mineralized in vitro and either functionally substitute for bone on a permanent basis or serve as a temporary structure that can be replaced by normal remodeling processes. A key element in this is mineralization of an implant with the matrix and mineral arranged in the proper orientations and relationships. This review examines the pathway to crystallization from a supersaturated calcium phosphate solution in vitro, focusing on the basic mechanistic questions concerning mineral nucleation and growth. Since bone and dentin mineral forms within collagenous matrices, we consider how the in vitro crystallization mechanisms might or might not be applicable to understanding the in vivo processes of biomineralization in bone and dentin. We propose that the pathway to crystallization from the calcium phosphate–supersaturated tissue fluids involves the formation of a dense liquid phase of first-layer bound-water hydrated calcium and phosphate ions in which the crystallization is nucleated. SIBLING proteins and their in vitro analogs, such as polyaspartic acids, have similar dense liquid first-layer bound-water surfaces which interact with the dense liquid calcium phosphate nucleation clusters and modulate the rate of crystallization within the bone and dentin collagen fibril matrix. |
doi_str_mv | 10.1007/s00223-012-9678-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1443410181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1443410181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-86d701f313162e7cd10abfc6c53e6c597680fdfe3dcbc94786d3b67acae1c9973</originalsourceid><addsrcrecordid>eNqNkctKAzEUhoMoWqsP4EYCbtyM5iRpMuOuFm_gbaHoLqSZTI3MpSYzSH16U6aKCIJZJIvz_f8hfAjtATkCQuRxIIRSlhCgSSZkmtA1NADOaEJSKtfRgICE5eR5C22H8EoIcCHEJtqijHLIKB-gp1PXVK62XpfuQ7euqfGNNS-6dqEKJ3iMb-07vtde525W4aLxeOIXodUlvu1MafuEq_Gdn8WMwTe69c7YsIM2Cl0Gu7t6h-jx_Oxhcplc311cTcbXiRkBb5NU5JJAwYCBoFaaHIieFkaYEbPxyqRISZEXluVmajIuI8-mQmqjLZgsk2yIDvveuW_eOhtaVblgbFnq2jZdUMA540AghX-hTFIGo4ge_EJfm87X8SORYlk8KU8jBT1lfBOCt4Wae1dpv1BA1FKQ6gWpKEgtBSkaM_ur5m5a2fw78WUkArQHQhzVM-t_rP6z9ROoTpoq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439999848</pqid></control><display><type>article</type><title>Biomineralization Mechanisms: A New Paradigm for Crystal Nucleation in Organic Matrices</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Veis, Arthur ; Dorvee, Jason R.</creator><creatorcontrib>Veis, Arthur ; Dorvee, Jason R.</creatorcontrib><description>There is substantial practical interest in the mechanism by which the carbonated apatite of bone mineral can be initiated specifically in a matrix. The current literature is replete with studies aimed at mimicking the properties of vertebrate bone, teeth, and other hard tissues by creating organic matrices that can be mineralized in vitro and either functionally substitute for bone on a permanent basis or serve as a temporary structure that can be replaced by normal remodeling processes. A key element in this is mineralization of an implant with the matrix and mineral arranged in the proper orientations and relationships. This review examines the pathway to crystallization from a supersaturated calcium phosphate solution in vitro, focusing on the basic mechanistic questions concerning mineral nucleation and growth. Since bone and dentin mineral forms within collagenous matrices, we consider how the in vitro crystallization mechanisms might or might not be applicable to understanding the in vivo processes of biomineralization in bone and dentin. We propose that the pathway to crystallization from the calcium phosphate–supersaturated tissue fluids involves the formation of a dense liquid phase of first-layer bound-water hydrated calcium and phosphate ions in which the crystallization is nucleated. SIBLING proteins and their in vitro analogs, such as polyaspartic acids, have similar dense liquid first-layer bound-water surfaces which interact with the dense liquid calcium phosphate nucleation clusters and modulate the rate of crystallization within the bone and dentin collagen fibril matrix.</description><identifier>ISSN: 0171-967X</identifier><identifier>EISSN: 1432-0827</identifier><identifier>DOI: 10.1007/s00223-012-9678-2</identifier><identifier>PMID: 23241924</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Animals ; Apatites - chemistry ; Biochemistry ; Biomedical and Life Sciences ; Bone and Bones - chemistry ; Bone Remodeling ; Calcification, Physiologic ; Calcinosis ; Calcium - chemistry ; Calcium Phosphates - chemistry ; Cell Biology ; Collagen - chemistry ; Crystal structure ; Crystallization ; Dentin - chemistry ; Endocrinology ; Extracellular Matrix - chemistry ; Ions ; Life Sciences ; Mineralization ; Minerals - chemistry ; Organic chemicals ; Original Research ; Orthopedics ; Peptides - chemistry ; Phosphates - chemistry ; Polymers - chemistry ; Static Electricity ; Thermodynamics ; Water - chemistry</subject><ispartof>Calcified tissue international, 2013-10, Vol.93 (4), p.307-315</ispartof><rights>Springer Science+Business Media New York 2012</rights><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-86d701f313162e7cd10abfc6c53e6c597680fdfe3dcbc94786d3b67acae1c9973</citedby><cites>FETCH-LOGICAL-c514t-86d701f313162e7cd10abfc6c53e6c597680fdfe3dcbc94786d3b67acae1c9973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00223-012-9678-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00223-012-9678-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23241924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Veis, Arthur</creatorcontrib><creatorcontrib>Dorvee, Jason R.</creatorcontrib><title>Biomineralization Mechanisms: A New Paradigm for Crystal Nucleation in Organic Matrices</title><title>Calcified tissue international</title><addtitle>Calcif Tissue Int</addtitle><addtitle>Calcif Tissue Int</addtitle><description>There is substantial practical interest in the mechanism by which the carbonated apatite of bone mineral can be initiated specifically in a matrix. The current literature is replete with studies aimed at mimicking the properties of vertebrate bone, teeth, and other hard tissues by creating organic matrices that can be mineralized in vitro and either functionally substitute for bone on a permanent basis or serve as a temporary structure that can be replaced by normal remodeling processes. A key element in this is mineralization of an implant with the matrix and mineral arranged in the proper orientations and relationships. This review examines the pathway to crystallization from a supersaturated calcium phosphate solution in vitro, focusing on the basic mechanistic questions concerning mineral nucleation and growth. Since bone and dentin mineral forms within collagenous matrices, we consider how the in vitro crystallization mechanisms might or might not be applicable to understanding the in vivo processes of biomineralization in bone and dentin. We propose that the pathway to crystallization from the calcium phosphate–supersaturated tissue fluids involves the formation of a dense liquid phase of first-layer bound-water hydrated calcium and phosphate ions in which the crystallization is nucleated. SIBLING proteins and their in vitro analogs, such as polyaspartic acids, have similar dense liquid first-layer bound-water surfaces which interact with the dense liquid calcium phosphate nucleation clusters and modulate the rate of crystallization within the bone and dentin collagen fibril matrix.</description><subject>Animals</subject><subject>Apatites - chemistry</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Bone and Bones - chemistry</subject><subject>Bone Remodeling</subject><subject>Calcification, Physiologic</subject><subject>Calcinosis</subject><subject>Calcium - chemistry</subject><subject>Calcium Phosphates - chemistry</subject><subject>Cell Biology</subject><subject>Collagen - chemistry</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Dentin - chemistry</subject><subject>Endocrinology</subject><subject>Extracellular Matrix - chemistry</subject><subject>Ions</subject><subject>Life Sciences</subject><subject>Mineralization</subject><subject>Minerals - chemistry</subject><subject>Organic chemicals</subject><subject>Original Research</subject><subject>Orthopedics</subject><subject>Peptides - chemistry</subject><subject>Phosphates - chemistry</subject><subject>Polymers - chemistry</subject><subject>Static Electricity</subject><subject>Thermodynamics</subject><subject>Water - chemistry</subject><issn>0171-967X</issn><issn>1432-0827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkctKAzEUhoMoWqsP4EYCbtyM5iRpMuOuFm_gbaHoLqSZTI3MpSYzSH16U6aKCIJZJIvz_f8hfAjtATkCQuRxIIRSlhCgSSZkmtA1NADOaEJSKtfRgICE5eR5C22H8EoIcCHEJtqijHLIKB-gp1PXVK62XpfuQ7euqfGNNS-6dqEKJ3iMb-07vtde525W4aLxeOIXodUlvu1MafuEq_Gdn8WMwTe69c7YsIM2Cl0Gu7t6h-jx_Oxhcplc311cTcbXiRkBb5NU5JJAwYCBoFaaHIieFkaYEbPxyqRISZEXluVmajIuI8-mQmqjLZgsk2yIDvveuW_eOhtaVblgbFnq2jZdUMA540AghX-hTFIGo4ge_EJfm87X8SORYlk8KU8jBT1lfBOCt4Wae1dpv1BA1FKQ6gWpKEgtBSkaM_ur5m5a2fw78WUkArQHQhzVM-t_rP6z9ROoTpoq</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Veis, Arthur</creator><creator>Dorvee, Jason R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20131001</creationdate><title>Biomineralization Mechanisms: A New Paradigm for Crystal Nucleation in Organic Matrices</title><author>Veis, Arthur ; Dorvee, Jason R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-86d701f313162e7cd10abfc6c53e6c597680fdfe3dcbc94786d3b67acae1c9973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Apatites - chemistry</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Bone and Bones - chemistry</topic><topic>Bone Remodeling</topic><topic>Calcification, Physiologic</topic><topic>Calcinosis</topic><topic>Calcium - chemistry</topic><topic>Calcium Phosphates - chemistry</topic><topic>Cell Biology</topic><topic>Collagen - chemistry</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Dentin - chemistry</topic><topic>Endocrinology</topic><topic>Extracellular Matrix - chemistry</topic><topic>Ions</topic><topic>Life Sciences</topic><topic>Mineralization</topic><topic>Minerals - chemistry</topic><topic>Organic chemicals</topic><topic>Original Research</topic><topic>Orthopedics</topic><topic>Peptides - chemistry</topic><topic>Phosphates - chemistry</topic><topic>Polymers - chemistry</topic><topic>Static Electricity</topic><topic>Thermodynamics</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veis, Arthur</creatorcontrib><creatorcontrib>Dorvee, Jason R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Calcified tissue international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veis, Arthur</au><au>Dorvee, Jason R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomineralization Mechanisms: A New Paradigm for Crystal Nucleation in Organic Matrices</atitle><jtitle>Calcified tissue international</jtitle><stitle>Calcif Tissue Int</stitle><addtitle>Calcif Tissue Int</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>93</volume><issue>4</issue><spage>307</spage><epage>315</epage><pages>307-315</pages><issn>0171-967X</issn><eissn>1432-0827</eissn><abstract>There is substantial practical interest in the mechanism by which the carbonated apatite of bone mineral can be initiated specifically in a matrix. The current literature is replete with studies aimed at mimicking the properties of vertebrate bone, teeth, and other hard tissues by creating organic matrices that can be mineralized in vitro and either functionally substitute for bone on a permanent basis or serve as a temporary structure that can be replaced by normal remodeling processes. A key element in this is mineralization of an implant with the matrix and mineral arranged in the proper orientations and relationships. This review examines the pathway to crystallization from a supersaturated calcium phosphate solution in vitro, focusing on the basic mechanistic questions concerning mineral nucleation and growth. Since bone and dentin mineral forms within collagenous matrices, we consider how the in vitro crystallization mechanisms might or might not be applicable to understanding the in vivo processes of biomineralization in bone and dentin. We propose that the pathway to crystallization from the calcium phosphate–supersaturated tissue fluids involves the formation of a dense liquid phase of first-layer bound-water hydrated calcium and phosphate ions in which the crystallization is nucleated. SIBLING proteins and their in vitro analogs, such as polyaspartic acids, have similar dense liquid first-layer bound-water surfaces which interact with the dense liquid calcium phosphate nucleation clusters and modulate the rate of crystallization within the bone and dentin collagen fibril matrix.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>23241924</pmid><doi>10.1007/s00223-012-9678-2</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0171-967X |
ispartof | Calcified tissue international, 2013-10, Vol.93 (4), p.307-315 |
issn | 0171-967X 1432-0827 |
language | eng |
recordid | cdi_proquest_miscellaneous_1443410181 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animals Apatites - chemistry Biochemistry Biomedical and Life Sciences Bone and Bones - chemistry Bone Remodeling Calcification, Physiologic Calcinosis Calcium - chemistry Calcium Phosphates - chemistry Cell Biology Collagen - chemistry Crystal structure Crystallization Dentin - chemistry Endocrinology Extracellular Matrix - chemistry Ions Life Sciences Mineralization Minerals - chemistry Organic chemicals Original Research Orthopedics Peptides - chemistry Phosphates - chemistry Polymers - chemistry Static Electricity Thermodynamics Water - chemistry |
title | Biomineralization Mechanisms: A New Paradigm for Crystal Nucleation in Organic Matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomineralization%20Mechanisms:%20A%20New%20Paradigm%20for%20Crystal%20Nucleation%20in%20Organic%20Matrices&rft.jtitle=Calcified%20tissue%20international&rft.au=Veis,%20Arthur&rft.date=2013-10-01&rft.volume=93&rft.issue=4&rft.spage=307&rft.epage=315&rft.pages=307-315&rft.issn=0171-967X&rft.eissn=1432-0827&rft_id=info:doi/10.1007/s00223-012-9678-2&rft_dat=%3Cproquest_cross%3E1443410181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439999848&rft_id=info:pmid/23241924&rfr_iscdi=true |