Communication Disruption of Guava Moth (Coscinoptycha improbana) Using a Pheromone Analog Based on Chain Length

The guava moth, Coscinoptycha improbana , an Australian species that infests fruit crops in commercial and home orchards, was first detected in New Zealand in 1997. A four-component pheromone blend was identified but is not yet commercially available. Using single sensillum recordings from male ante...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical ecology 2013-09, Vol.39 (9), p.1161-1168
Hauptverfasser: Suckling, D. M., Dymock, J. J., Park, K. C., Wakelin, R. H., Jamieson, L. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1168
container_issue 9
container_start_page 1161
container_title Journal of chemical ecology
container_volume 39
creator Suckling, D. M.
Dymock, J. J.
Park, K. C.
Wakelin, R. H.
Jamieson, L. E.
description The guava moth, Coscinoptycha improbana , an Australian species that infests fruit crops in commercial and home orchards, was first detected in New Zealand in 1997. A four-component pheromone blend was identified but is not yet commercially available. Using single sensillum recordings from male antennae, we established that the same olfactory receptor neurons responded to two guava moth sex pheromone components, ( Z )-11-octadecen-8-one and ( Z )-12-nonadecen-9-one, and to a chain length analog, ( Z )-13-eicosen-10-one, the sex pheromone of the related peach fruit moth, Carposina sasakii . We then field tested whether this non-specificity of the olfactory neurons might enable disruption of sexual communication by the commercially available analog, using male catch to synthetic lures in traps in single-tree, nine-tree and 2-ha plots. A disruptive pheromone analog, based on chain length, is reported for the first time. Trap catches for guava moth were disrupted by three polyethylene tubing dispensers releasing the analog in single-tree plots (86 % disruption of control catches) and in a plots of nine trees (99 % disruption). Where peach fruit moth pheromone dispensers were deployed at a density of 1000/ha in two 2-ha areas, pheromone traps for guava moth were completely disrupted for an extended period (up to 470 days in peri-urban gardens in Mangonui and 422 days in macadamia nut orchards in Kerikeri). In contrast, traps in untreated areas over 100 m away caught 302.8 ± 128.1 moths/trap in Mangonui and 327.5 ± 78.5 moths/ trap in Kerikeri. The longer chain length in the pheromone analog has greater longevity than the natural pheromone due to its lower volatility. Chain length analogs may warrant further investigation for mating disruption in Lepidoptera, and screening using single-sensillum recording is recommended.
doi_str_mv 10.1007/s10886-013-0339-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1443405794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089498771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-42827d5cc95076d09f2040e16a2c36e8ac2e2df4417a2ccc55e4983218cf9f073</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EotvCD-CCLCGkcgj4M3aObSgFaREc6NmaOs7GVWIvdoLUf4_DLh9CQuLkkeeZd97Ri9AzSl5TQtSbTInWdUUorwjnTcUfoA2VildU1vQh2hDS6LVDT9BpzneEEFZr-RidMFEqRuUGxTZO0xK8hdnHgN_6nJb9jzL2-HqBb4A_xnnA523M1oe4n-_tANhP-xRvIcArfJN92GHAnweX4hSDwxcBxrjDl5Bdh4tSO4APeOvCbh6eoEc9jNk9Pb5n6Obd1Zf2fbX9dP2hvdhWVnA5V4JppjppbSOJqjvS9IwI4mgNzPLaabDMsa4XgqryY62UTjSaM6pt3_RE8TN0ftAtPr8uLs9m8tm6cYTg4pINFYILIlUj_gvlihXxgr74C72LSyrnrhRvWM2Ly0LRA2VTzDm53uyTnyDdG0rMGpw5BGdKcGYNzvAy8_yovNxOrvs18TOpArw8ApAtjH2CYH3-zSktheTrNezA5dIKO5f-sPjP7d8BYBeuDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439263040</pqid></control><display><type>article</type><title>Communication Disruption of Guava Moth (Coscinoptycha improbana) Using a Pheromone Analog Based on Chain Length</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Suckling, D. M. ; Dymock, J. J. ; Park, K. C. ; Wakelin, R. H. ; Jamieson, L. E.</creator><creatorcontrib>Suckling, D. M. ; Dymock, J. J. ; Park, K. C. ; Wakelin, R. H. ; Jamieson, L. E.</creatorcontrib><description>The guava moth, Coscinoptycha improbana , an Australian species that infests fruit crops in commercial and home orchards, was first detected in New Zealand in 1997. A four-component pheromone blend was identified but is not yet commercially available. Using single sensillum recordings from male antennae, we established that the same olfactory receptor neurons responded to two guava moth sex pheromone components, ( Z )-11-octadecen-8-one and ( Z )-12-nonadecen-9-one, and to a chain length analog, ( Z )-13-eicosen-10-one, the sex pheromone of the related peach fruit moth, Carposina sasakii . We then field tested whether this non-specificity of the olfactory neurons might enable disruption of sexual communication by the commercially available analog, using male catch to synthetic lures in traps in single-tree, nine-tree and 2-ha plots. A disruptive pheromone analog, based on chain length, is reported for the first time. Trap catches for guava moth were disrupted by three polyethylene tubing dispensers releasing the analog in single-tree plots (86 % disruption of control catches) and in a plots of nine trees (99 % disruption). Where peach fruit moth pheromone dispensers were deployed at a density of 1000/ha in two 2-ha areas, pheromone traps for guava moth were completely disrupted for an extended period (up to 470 days in peri-urban gardens in Mangonui and 422 days in macadamia nut orchards in Kerikeri). In contrast, traps in untreated areas over 100 m away caught 302.8 ± 128.1 moths/trap in Mangonui and 327.5 ± 78.5 moths/ trap in Kerikeri. The longer chain length in the pheromone analog has greater longevity than the natural pheromone due to its lower volatility. Chain length analogs may warrant further investigation for mating disruption in Lepidoptera, and screening using single-sensillum recording is recommended.</description><identifier>ISSN: 0098-0331</identifier><identifier>EISSN: 1573-1561</identifier><identifier>DOI: 10.1007/s10886-013-0339-3</identifier><identifier>PMID: 24026215</identifier><identifier>CODEN: JCECD8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Agriculture ; Animal Communication ; Animal populations ; Animals ; Biochemistry ; Biological and medical sciences ; Biological Microscopy ; Biomedical and Life Sciences ; Butterflies &amp; moths ; Carposina sasakii ; Chemical ecology ; Ecology ; Entomology ; Fruit crops ; Fruits ; Fundamental and applied biological sciences. Psychology ; Insect Control - methods ; Insecta ; Invertebrates ; Lepidoptera ; Life Sciences ; Macadamia ; Male ; Moths - physiology ; Olfactory Receptor Neurons - physiology ; Orchards ; Pheromones ; Prunus ; Sex Attractants - chemistry ; Sex Attractants - physiology ; Sexual Behavior, Animal - physiology</subject><ispartof>Journal of chemical ecology, 2013-09, Vol.39 (9), p.1161-1168</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-42827d5cc95076d09f2040e16a2c36e8ac2e2df4417a2ccc55e4983218cf9f073</citedby><cites>FETCH-LOGICAL-c435t-42827d5cc95076d09f2040e16a2c36e8ac2e2df4417a2ccc55e4983218cf9f073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10886-013-0339-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10886-013-0339-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27854534$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24026215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suckling, D. M.</creatorcontrib><creatorcontrib>Dymock, J. J.</creatorcontrib><creatorcontrib>Park, K. C.</creatorcontrib><creatorcontrib>Wakelin, R. H.</creatorcontrib><creatorcontrib>Jamieson, L. E.</creatorcontrib><title>Communication Disruption of Guava Moth (Coscinoptycha improbana) Using a Pheromone Analog Based on Chain Length</title><title>Journal of chemical ecology</title><addtitle>J Chem Ecol</addtitle><addtitle>J Chem Ecol</addtitle><description>The guava moth, Coscinoptycha improbana , an Australian species that infests fruit crops in commercial and home orchards, was first detected in New Zealand in 1997. A four-component pheromone blend was identified but is not yet commercially available. Using single sensillum recordings from male antennae, we established that the same olfactory receptor neurons responded to two guava moth sex pheromone components, ( Z )-11-octadecen-8-one and ( Z )-12-nonadecen-9-one, and to a chain length analog, ( Z )-13-eicosen-10-one, the sex pheromone of the related peach fruit moth, Carposina sasakii . We then field tested whether this non-specificity of the olfactory neurons might enable disruption of sexual communication by the commercially available analog, using male catch to synthetic lures in traps in single-tree, nine-tree and 2-ha plots. A disruptive pheromone analog, based on chain length, is reported for the first time. Trap catches for guava moth were disrupted by three polyethylene tubing dispensers releasing the analog in single-tree plots (86 % disruption of control catches) and in a plots of nine trees (99 % disruption). Where peach fruit moth pheromone dispensers were deployed at a density of 1000/ha in two 2-ha areas, pheromone traps for guava moth were completely disrupted for an extended period (up to 470 days in peri-urban gardens in Mangonui and 422 days in macadamia nut orchards in Kerikeri). In contrast, traps in untreated areas over 100 m away caught 302.8 ± 128.1 moths/trap in Mangonui and 327.5 ± 78.5 moths/ trap in Kerikeri. The longer chain length in the pheromone analog has greater longevity than the natural pheromone due to its lower volatility. Chain length analogs may warrant further investigation for mating disruption in Lepidoptera, and screening using single-sensillum recording is recommended.</description><subject>Agriculture</subject><subject>Animal Communication</subject><subject>Animal populations</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Butterflies &amp; moths</subject><subject>Carposina sasakii</subject><subject>Chemical ecology</subject><subject>Ecology</subject><subject>Entomology</subject><subject>Fruit crops</subject><subject>Fruits</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Insect Control - methods</subject><subject>Insecta</subject><subject>Invertebrates</subject><subject>Lepidoptera</subject><subject>Life Sciences</subject><subject>Macadamia</subject><subject>Male</subject><subject>Moths - physiology</subject><subject>Olfactory Receptor Neurons - physiology</subject><subject>Orchards</subject><subject>Pheromones</subject><subject>Prunus</subject><subject>Sex Attractants - chemistry</subject><subject>Sex Attractants - physiology</subject><subject>Sexual Behavior, Animal - physiology</subject><issn>0098-0331</issn><issn>1573-1561</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1v1DAQhi0EotvCD-CCLCGkcgj4M3aObSgFaREc6NmaOs7GVWIvdoLUf4_DLh9CQuLkkeeZd97Ri9AzSl5TQtSbTInWdUUorwjnTcUfoA2VildU1vQh2hDS6LVDT9BpzneEEFZr-RidMFEqRuUGxTZO0xK8hdnHgN_6nJb9jzL2-HqBb4A_xnnA523M1oe4n-_tANhP-xRvIcArfJN92GHAnweX4hSDwxcBxrjDl5Bdh4tSO4APeOvCbh6eoEc9jNk9Pb5n6Obd1Zf2fbX9dP2hvdhWVnA5V4JppjppbSOJqjvS9IwI4mgNzPLaabDMsa4XgqryY62UTjSaM6pt3_RE8TN0ftAtPr8uLs9m8tm6cYTg4pINFYILIlUj_gvlihXxgr74C72LSyrnrhRvWM2Ly0LRA2VTzDm53uyTnyDdG0rMGpw5BGdKcGYNzvAy8_yovNxOrvs18TOpArw8ApAtjH2CYH3-zSktheTrNezA5dIKO5f-sPjP7d8BYBeuDQ</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Suckling, D. M.</creator><creator>Dymock, J. J.</creator><creator>Park, K. C.</creator><creator>Wakelin, R. H.</creator><creator>Jamieson, L. E.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20130901</creationdate><title>Communication Disruption of Guava Moth (Coscinoptycha improbana) Using a Pheromone Analog Based on Chain Length</title><author>Suckling, D. M. ; Dymock, J. J. ; Park, K. C. ; Wakelin, R. H. ; Jamieson, L. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-42827d5cc95076d09f2040e16a2c36e8ac2e2df4417a2ccc55e4983218cf9f073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agriculture</topic><topic>Animal Communication</topic><topic>Animal populations</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Butterflies &amp; moths</topic><topic>Carposina sasakii</topic><topic>Chemical ecology</topic><topic>Ecology</topic><topic>Entomology</topic><topic>Fruit crops</topic><topic>Fruits</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Insect Control - methods</topic><topic>Insecta</topic><topic>Invertebrates</topic><topic>Lepidoptera</topic><topic>Life Sciences</topic><topic>Macadamia</topic><topic>Male</topic><topic>Moths - physiology</topic><topic>Olfactory Receptor Neurons - physiology</topic><topic>Orchards</topic><topic>Pheromones</topic><topic>Prunus</topic><topic>Sex Attractants - chemistry</topic><topic>Sex Attractants - physiology</topic><topic>Sexual Behavior, Animal - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suckling, D. M.</creatorcontrib><creatorcontrib>Dymock, J. J.</creatorcontrib><creatorcontrib>Park, K. C.</creatorcontrib><creatorcontrib>Wakelin, R. H.</creatorcontrib><creatorcontrib>Jamieson, L. E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Toxicology Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suckling, D. M.</au><au>Dymock, J. J.</au><au>Park, K. C.</au><au>Wakelin, R. H.</au><au>Jamieson, L. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Communication Disruption of Guava Moth (Coscinoptycha improbana) Using a Pheromone Analog Based on Chain Length</atitle><jtitle>Journal of chemical ecology</jtitle><stitle>J Chem Ecol</stitle><addtitle>J Chem Ecol</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>39</volume><issue>9</issue><spage>1161</spage><epage>1168</epage><pages>1161-1168</pages><issn>0098-0331</issn><eissn>1573-1561</eissn><coden>JCECD8</coden><abstract>The guava moth, Coscinoptycha improbana , an Australian species that infests fruit crops in commercial and home orchards, was first detected in New Zealand in 1997. A four-component pheromone blend was identified but is not yet commercially available. Using single sensillum recordings from male antennae, we established that the same olfactory receptor neurons responded to two guava moth sex pheromone components, ( Z )-11-octadecen-8-one and ( Z )-12-nonadecen-9-one, and to a chain length analog, ( Z )-13-eicosen-10-one, the sex pheromone of the related peach fruit moth, Carposina sasakii . We then field tested whether this non-specificity of the olfactory neurons might enable disruption of sexual communication by the commercially available analog, using male catch to synthetic lures in traps in single-tree, nine-tree and 2-ha plots. A disruptive pheromone analog, based on chain length, is reported for the first time. Trap catches for guava moth were disrupted by three polyethylene tubing dispensers releasing the analog in single-tree plots (86 % disruption of control catches) and in a plots of nine trees (99 % disruption). Where peach fruit moth pheromone dispensers were deployed at a density of 1000/ha in two 2-ha areas, pheromone traps for guava moth were completely disrupted for an extended period (up to 470 days in peri-urban gardens in Mangonui and 422 days in macadamia nut orchards in Kerikeri). In contrast, traps in untreated areas over 100 m away caught 302.8 ± 128.1 moths/trap in Mangonui and 327.5 ± 78.5 moths/ trap in Kerikeri. The longer chain length in the pheromone analog has greater longevity than the natural pheromone due to its lower volatility. Chain length analogs may warrant further investigation for mating disruption in Lepidoptera, and screening using single-sensillum recording is recommended.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>24026215</pmid><doi>10.1007/s10886-013-0339-3</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-0331
ispartof Journal of chemical ecology, 2013-09, Vol.39 (9), p.1161-1168
issn 0098-0331
1573-1561
language eng
recordid cdi_proquest_miscellaneous_1443405794
source MEDLINE; SpringerNature Journals
subjects Agriculture
Animal Communication
Animal populations
Animals
Biochemistry
Biological and medical sciences
Biological Microscopy
Biomedical and Life Sciences
Butterflies & moths
Carposina sasakii
Chemical ecology
Ecology
Entomology
Fruit crops
Fruits
Fundamental and applied biological sciences. Psychology
Insect Control - methods
Insecta
Invertebrates
Lepidoptera
Life Sciences
Macadamia
Male
Moths - physiology
Olfactory Receptor Neurons - physiology
Orchards
Pheromones
Prunus
Sex Attractants - chemistry
Sex Attractants - physiology
Sexual Behavior, Animal - physiology
title Communication Disruption of Guava Moth (Coscinoptycha improbana) Using a Pheromone Analog Based on Chain Length
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Communication%20Disruption%20of%20Guava%20Moth%20(Coscinoptycha%20improbana)%20Using%20a%20Pheromone%20Analog%20Based%20on%20Chain%20Length&rft.jtitle=Journal%20of%20chemical%20ecology&rft.au=Suckling,%20D.%20M.&rft.date=2013-09-01&rft.volume=39&rft.issue=9&rft.spage=1161&rft.epage=1168&rft.pages=1161-1168&rft.issn=0098-0331&rft.eissn=1573-1561&rft.coden=JCECD8&rft_id=info:doi/10.1007/s10886-013-0339-3&rft_dat=%3Cproquest_cross%3E3089498771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439263040&rft_id=info:pmid/24026215&rfr_iscdi=true