Endoplasmic Reticulum Stress Participates in Aortic Valve Calcification in Hypercholesterolemic Animals

OBJECTIVES—Aortic valve (AV) calcification occurs via a pathophysiological process that includes lipoprotein deposition, inflammation, and osteoblastic differentiation of valvular interstitial cells. Here, we investigated the association between endoplasmic reticulum (ER) stress and AV calcification...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2013-10, Vol.33 (10), p.2345-2354
Hauptverfasser: Cai, Zhejun, Li, Fei, Gong, Wei, Liu, Wanjun, Duan, Quanlu, Chen, Chen, Ni, Li, Xia, Yong, Cianflone, Katherine, Dong, Nianguo, Wang, Dao Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2354
container_issue 10
container_start_page 2345
container_title Arteriosclerosis, thrombosis, and vascular biology
container_volume 33
creator Cai, Zhejun
Li, Fei
Gong, Wei
Liu, Wanjun
Duan, Quanlu
Chen, Chen
Ni, Li
Xia, Yong
Cianflone, Katherine
Dong, Nianguo
Wang, Dao Wen
description OBJECTIVES—Aortic valve (AV) calcification occurs via a pathophysiological process that includes lipoprotein deposition, inflammation, and osteoblastic differentiation of valvular interstitial cells. Here, we investigated the association between endoplasmic reticulum (ER) stress and AV calcification. APPROACH AND RESULTS—We identified ER stress activation in AV of patients with calcified AV stenosis. We generated an AV calcification model in hypercholesterolemic rabbits and mice, respectively, and found marked AV ER stress induction. Classical ER stress inhibitor, tauroursodeoxycholic acid, administration markedly prevented AV calcification, and attenuated AV osteoblastic differentiation and inflammation in both rabbit and mouse models of AV calcification via inhibition of ER stress. In cultured valvular interstitial cells (VICs), we found that oxidized low density lipoprotein (oxLDL) caused ER stress in a cytosolic [Ca]i-dependent manner. OxLDL promoted osteoblastic differentiation via ER stress–mediated protein kinase-like ER kinase/activating transcription factor 4/osteocalcin and inositol-requiring transmembrane kinase and endonuclease-1α (IRE1α)/spliced X-box–binding protein 1/Runx2 pathway, and induced inflammatory responses through IRE1α/c-Jun N-terminal kinase and IRE1α/nuclear factor kappa-light-chain-enhancer of activated B cells signaling in VICs. Inhibition of ER stress by either tauroursodeoxycholic acid or 4-phenyl butyric acid could both suppress oxLDL–induced osteoblastic differentiation and inflammatory responses in VICs. CONCLUSIONS—These data provide novel evidence that ER stress participates in AV calcification development, and suggest that ER stress may be a novel target for AV calcification prevention and treatment.
doi_str_mv 10.1161/ATVBAHA.112.300226
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1443399179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1443399179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4606-20adf5d7300c1c77cc6d7af17af588375646259e2b5a0a34d9b1d3f7acd21cfb3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBCIlscPcEA5cknxK05yDFWhSJVAUHq1HMehBueBnVD173GUwpGDNZ7d2dHuAHCF4Awhhm6z9eYuW2ae4BmBEGN2BKYowjSkjLBj_4dxGkaM4gk4c-4DQkgxhqdggkmKk4RFU_C-qIumNcJVWgYvqtOyN30VvHZWORc8C-sruhWdcoGug6wZeLAR5lsFc2GkLrUUnW7qobvct8rKbWOU65T1MHhmta6EcRfgpPSgLg94Dt7uF-v5Mlw9PTzOs1UoKYMsxFAUZVTE_hyJZBxLyYpYlMi_KElI7I9hOEoVziMBBaFFmqOClLGQBUayzMk5uBl9W9t89X4RXmknlTGiVk3vOKKUkDRFceqleJRK2zhnVclb63e1e44gHwLmh4A9wXwM2A9dH_z7vFLF38hvol7ARsGuMT4F92n6nbJ8q4Tptv85_wBJ-onR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443399179</pqid></control><display><type>article</type><title>Endoplasmic Reticulum Stress Participates in Aortic Valve Calcification in Hypercholesterolemic Animals</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>Alma/SFX Local Collection</source><creator>Cai, Zhejun ; Li, Fei ; Gong, Wei ; Liu, Wanjun ; Duan, Quanlu ; Chen, Chen ; Ni, Li ; Xia, Yong ; Cianflone, Katherine ; Dong, Nianguo ; Wang, Dao Wen</creator><creatorcontrib>Cai, Zhejun ; Li, Fei ; Gong, Wei ; Liu, Wanjun ; Duan, Quanlu ; Chen, Chen ; Ni, Li ; Xia, Yong ; Cianflone, Katherine ; Dong, Nianguo ; Wang, Dao Wen</creatorcontrib><description>OBJECTIVES—Aortic valve (AV) calcification occurs via a pathophysiological process that includes lipoprotein deposition, inflammation, and osteoblastic differentiation of valvular interstitial cells. Here, we investigated the association between endoplasmic reticulum (ER) stress and AV calcification. APPROACH AND RESULTS—We identified ER stress activation in AV of patients with calcified AV stenosis. We generated an AV calcification model in hypercholesterolemic rabbits and mice, respectively, and found marked AV ER stress induction. Classical ER stress inhibitor, tauroursodeoxycholic acid, administration markedly prevented AV calcification, and attenuated AV osteoblastic differentiation and inflammation in both rabbit and mouse models of AV calcification via inhibition of ER stress. In cultured valvular interstitial cells (VICs), we found that oxidized low density lipoprotein (oxLDL) caused ER stress in a cytosolic [Ca]i-dependent manner. OxLDL promoted osteoblastic differentiation via ER stress–mediated protein kinase-like ER kinase/activating transcription factor 4/osteocalcin and inositol-requiring transmembrane kinase and endonuclease-1α (IRE1α)/spliced X-box–binding protein 1/Runx2 pathway, and induced inflammatory responses through IRE1α/c-Jun N-terminal kinase and IRE1α/nuclear factor kappa-light-chain-enhancer of activated B cells signaling in VICs. Inhibition of ER stress by either tauroursodeoxycholic acid or 4-phenyl butyric acid could both suppress oxLDL–induced osteoblastic differentiation and inflammatory responses in VICs. CONCLUSIONS—These data provide novel evidence that ER stress participates in AV calcification development, and suggest that ER stress may be a novel target for AV calcification prevention and treatment.</description><identifier>ISSN: 1079-5642</identifier><identifier>EISSN: 1524-4636</identifier><identifier>DOI: 10.1161/ATVBAHA.112.300226</identifier><identifier>PMID: 23928865</identifier><language>eng</language><publisher>United States: American Heart Association, Inc</publisher><subject>Aged ; Animals ; Aortic Valve - drug effects ; Aortic Valve - metabolism ; Aortic Valve - pathology ; Aortic Valve Stenosis - etiology ; Aortic Valve Stenosis - genetics ; Aortic Valve Stenosis - metabolism ; Aortic Valve Stenosis - pathology ; Aortic Valve Stenosis - prevention &amp; control ; Apolipoproteins E - deficiency ; Apolipoproteins E - genetics ; Calcinosis - etiology ; Calcinosis - genetics ; Calcinosis - metabolism ; Calcinosis - pathology ; Calcinosis - prevention &amp; control ; Calcium - metabolism ; Cell Differentiation ; Cells, Cultured ; Disease Models, Animal ; Endoplasmic Reticulum - drug effects ; Endoplasmic Reticulum - metabolism ; Endoplasmic Reticulum - pathology ; Endoplasmic Reticulum Stress - drug effects ; Female ; Humans ; Hypercholesterolemia - complications ; Hypercholesterolemia - drug therapy ; Hypercholesterolemia - genetics ; Hypercholesterolemia - metabolism ; Hypercholesterolemia - pathology ; Inflammation - etiology ; Inflammation - metabolism ; Inflammation - pathology ; Inflammation - prevention &amp; control ; Inflammation Mediators - metabolism ; Intracellular Signaling Peptides and Proteins - genetics ; Intracellular Signaling Peptides and Proteins - metabolism ; Lipoproteins, LDL - metabolism ; Male ; Mice ; Mice, Knockout ; Middle Aged ; Osteoblasts - metabolism ; Osteoblasts - pathology ; Phenylbutyrates - pharmacology ; Rabbits ; RNA Interference ; Signal Transduction ; Swine ; Taurochenodeoxycholic Acid - pharmacology ; Transfection</subject><ispartof>Arteriosclerosis, thrombosis, and vascular biology, 2013-10, Vol.33 (10), p.2345-2354</ispartof><rights>2013 American Heart Association, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4606-20adf5d7300c1c77cc6d7af17af588375646259e2b5a0a34d9b1d3f7acd21cfb3</citedby><cites>FETCH-LOGICAL-c4606-20adf5d7300c1c77cc6d7af17af588375646259e2b5a0a34d9b1d3f7acd21cfb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23928865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Zhejun</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Gong, Wei</creatorcontrib><creatorcontrib>Liu, Wanjun</creatorcontrib><creatorcontrib>Duan, Quanlu</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Ni, Li</creatorcontrib><creatorcontrib>Xia, Yong</creatorcontrib><creatorcontrib>Cianflone, Katherine</creatorcontrib><creatorcontrib>Dong, Nianguo</creatorcontrib><creatorcontrib>Wang, Dao Wen</creatorcontrib><title>Endoplasmic Reticulum Stress Participates in Aortic Valve Calcification in Hypercholesterolemic Animals</title><title>Arteriosclerosis, thrombosis, and vascular biology</title><addtitle>Arterioscler Thromb Vasc Biol</addtitle><description>OBJECTIVES—Aortic valve (AV) calcification occurs via a pathophysiological process that includes lipoprotein deposition, inflammation, and osteoblastic differentiation of valvular interstitial cells. Here, we investigated the association between endoplasmic reticulum (ER) stress and AV calcification. APPROACH AND RESULTS—We identified ER stress activation in AV of patients with calcified AV stenosis. We generated an AV calcification model in hypercholesterolemic rabbits and mice, respectively, and found marked AV ER stress induction. Classical ER stress inhibitor, tauroursodeoxycholic acid, administration markedly prevented AV calcification, and attenuated AV osteoblastic differentiation and inflammation in both rabbit and mouse models of AV calcification via inhibition of ER stress. In cultured valvular interstitial cells (VICs), we found that oxidized low density lipoprotein (oxLDL) caused ER stress in a cytosolic [Ca]i-dependent manner. OxLDL promoted osteoblastic differentiation via ER stress–mediated protein kinase-like ER kinase/activating transcription factor 4/osteocalcin and inositol-requiring transmembrane kinase and endonuclease-1α (IRE1α)/spliced X-box–binding protein 1/Runx2 pathway, and induced inflammatory responses through IRE1α/c-Jun N-terminal kinase and IRE1α/nuclear factor kappa-light-chain-enhancer of activated B cells signaling in VICs. Inhibition of ER stress by either tauroursodeoxycholic acid or 4-phenyl butyric acid could both suppress oxLDL–induced osteoblastic differentiation and inflammatory responses in VICs. CONCLUSIONS—These data provide novel evidence that ER stress participates in AV calcification development, and suggest that ER stress may be a novel target for AV calcification prevention and treatment.</description><subject>Aged</subject><subject>Animals</subject><subject>Aortic Valve - drug effects</subject><subject>Aortic Valve - metabolism</subject><subject>Aortic Valve - pathology</subject><subject>Aortic Valve Stenosis - etiology</subject><subject>Aortic Valve Stenosis - genetics</subject><subject>Aortic Valve Stenosis - metabolism</subject><subject>Aortic Valve Stenosis - pathology</subject><subject>Aortic Valve Stenosis - prevention &amp; control</subject><subject>Apolipoproteins E - deficiency</subject><subject>Apolipoproteins E - genetics</subject><subject>Calcinosis - etiology</subject><subject>Calcinosis - genetics</subject><subject>Calcinosis - metabolism</subject><subject>Calcinosis - pathology</subject><subject>Calcinosis - prevention &amp; control</subject><subject>Calcium - metabolism</subject><subject>Cell Differentiation</subject><subject>Cells, Cultured</subject><subject>Disease Models, Animal</subject><subject>Endoplasmic Reticulum - drug effects</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endoplasmic Reticulum - pathology</subject><subject>Endoplasmic Reticulum Stress - drug effects</subject><subject>Female</subject><subject>Humans</subject><subject>Hypercholesterolemia - complications</subject><subject>Hypercholesterolemia - drug therapy</subject><subject>Hypercholesterolemia - genetics</subject><subject>Hypercholesterolemia - metabolism</subject><subject>Hypercholesterolemia - pathology</subject><subject>Inflammation - etiology</subject><subject>Inflammation - metabolism</subject><subject>Inflammation - pathology</subject><subject>Inflammation - prevention &amp; control</subject><subject>Inflammation Mediators - metabolism</subject><subject>Intracellular Signaling Peptides and Proteins - genetics</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Lipoproteins, LDL - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Middle Aged</subject><subject>Osteoblasts - metabolism</subject><subject>Osteoblasts - pathology</subject><subject>Phenylbutyrates - pharmacology</subject><subject>Rabbits</subject><subject>RNA Interference</subject><subject>Signal Transduction</subject><subject>Swine</subject><subject>Taurochenodeoxycholic Acid - pharmacology</subject><subject>Transfection</subject><issn>1079-5642</issn><issn>1524-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UMtOwzAQtBCIlscPcEA5cknxK05yDFWhSJVAUHq1HMehBueBnVD173GUwpGDNZ7d2dHuAHCF4Awhhm6z9eYuW2ae4BmBEGN2BKYowjSkjLBj_4dxGkaM4gk4c-4DQkgxhqdggkmKk4RFU_C-qIumNcJVWgYvqtOyN30VvHZWORc8C-sruhWdcoGug6wZeLAR5lsFc2GkLrUUnW7qobvct8rKbWOU65T1MHhmta6EcRfgpPSgLg94Dt7uF-v5Mlw9PTzOs1UoKYMsxFAUZVTE_hyJZBxLyYpYlMi_KElI7I9hOEoVziMBBaFFmqOClLGQBUayzMk5uBl9W9t89X4RXmknlTGiVk3vOKKUkDRFceqleJRK2zhnVclb63e1e44gHwLmh4A9wXwM2A9dH_z7vFLF38hvol7ARsGuMT4F92n6nbJ8q4Tptv85_wBJ-onR</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Cai, Zhejun</creator><creator>Li, Fei</creator><creator>Gong, Wei</creator><creator>Liu, Wanjun</creator><creator>Duan, Quanlu</creator><creator>Chen, Chen</creator><creator>Ni, Li</creator><creator>Xia, Yong</creator><creator>Cianflone, Katherine</creator><creator>Dong, Nianguo</creator><creator>Wang, Dao Wen</creator><general>American Heart Association, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201310</creationdate><title>Endoplasmic Reticulum Stress Participates in Aortic Valve Calcification in Hypercholesterolemic Animals</title><author>Cai, Zhejun ; Li, Fei ; Gong, Wei ; Liu, Wanjun ; Duan, Quanlu ; Chen, Chen ; Ni, Li ; Xia, Yong ; Cianflone, Katherine ; Dong, Nianguo ; Wang, Dao Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4606-20adf5d7300c1c77cc6d7af17af588375646259e2b5a0a34d9b1d3f7acd21cfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aged</topic><topic>Animals</topic><topic>Aortic Valve - drug effects</topic><topic>Aortic Valve - metabolism</topic><topic>Aortic Valve - pathology</topic><topic>Aortic Valve Stenosis - etiology</topic><topic>Aortic Valve Stenosis - genetics</topic><topic>Aortic Valve Stenosis - metabolism</topic><topic>Aortic Valve Stenosis - pathology</topic><topic>Aortic Valve Stenosis - prevention &amp; control</topic><topic>Apolipoproteins E - deficiency</topic><topic>Apolipoproteins E - genetics</topic><topic>Calcinosis - etiology</topic><topic>Calcinosis - genetics</topic><topic>Calcinosis - metabolism</topic><topic>Calcinosis - pathology</topic><topic>Calcinosis - prevention &amp; control</topic><topic>Calcium - metabolism</topic><topic>Cell Differentiation</topic><topic>Cells, Cultured</topic><topic>Disease Models, Animal</topic><topic>Endoplasmic Reticulum - drug effects</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endoplasmic Reticulum - pathology</topic><topic>Endoplasmic Reticulum Stress - drug effects</topic><topic>Female</topic><topic>Humans</topic><topic>Hypercholesterolemia - complications</topic><topic>Hypercholesterolemia - drug therapy</topic><topic>Hypercholesterolemia - genetics</topic><topic>Hypercholesterolemia - metabolism</topic><topic>Hypercholesterolemia - pathology</topic><topic>Inflammation - etiology</topic><topic>Inflammation - metabolism</topic><topic>Inflammation - pathology</topic><topic>Inflammation - prevention &amp; control</topic><topic>Inflammation Mediators - metabolism</topic><topic>Intracellular Signaling Peptides and Proteins - genetics</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Lipoproteins, LDL - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Middle Aged</topic><topic>Osteoblasts - metabolism</topic><topic>Osteoblasts - pathology</topic><topic>Phenylbutyrates - pharmacology</topic><topic>Rabbits</topic><topic>RNA Interference</topic><topic>Signal Transduction</topic><topic>Swine</topic><topic>Taurochenodeoxycholic Acid - pharmacology</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Zhejun</creatorcontrib><creatorcontrib>Li, Fei</creatorcontrib><creatorcontrib>Gong, Wei</creatorcontrib><creatorcontrib>Liu, Wanjun</creatorcontrib><creatorcontrib>Duan, Quanlu</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Ni, Li</creatorcontrib><creatorcontrib>Xia, Yong</creatorcontrib><creatorcontrib>Cianflone, Katherine</creatorcontrib><creatorcontrib>Dong, Nianguo</creatorcontrib><creatorcontrib>Wang, Dao Wen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Zhejun</au><au>Li, Fei</au><au>Gong, Wei</au><au>Liu, Wanjun</au><au>Duan, Quanlu</au><au>Chen, Chen</au><au>Ni, Li</au><au>Xia, Yong</au><au>Cianflone, Katherine</au><au>Dong, Nianguo</au><au>Wang, Dao Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endoplasmic Reticulum Stress Participates in Aortic Valve Calcification in Hypercholesterolemic Animals</atitle><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle><addtitle>Arterioscler Thromb Vasc Biol</addtitle><date>2013-10</date><risdate>2013</risdate><volume>33</volume><issue>10</issue><spage>2345</spage><epage>2354</epage><pages>2345-2354</pages><issn>1079-5642</issn><eissn>1524-4636</eissn><abstract>OBJECTIVES—Aortic valve (AV) calcification occurs via a pathophysiological process that includes lipoprotein deposition, inflammation, and osteoblastic differentiation of valvular interstitial cells. Here, we investigated the association between endoplasmic reticulum (ER) stress and AV calcification. APPROACH AND RESULTS—We identified ER stress activation in AV of patients with calcified AV stenosis. We generated an AV calcification model in hypercholesterolemic rabbits and mice, respectively, and found marked AV ER stress induction. Classical ER stress inhibitor, tauroursodeoxycholic acid, administration markedly prevented AV calcification, and attenuated AV osteoblastic differentiation and inflammation in both rabbit and mouse models of AV calcification via inhibition of ER stress. In cultured valvular interstitial cells (VICs), we found that oxidized low density lipoprotein (oxLDL) caused ER stress in a cytosolic [Ca]i-dependent manner. OxLDL promoted osteoblastic differentiation via ER stress–mediated protein kinase-like ER kinase/activating transcription factor 4/osteocalcin and inositol-requiring transmembrane kinase and endonuclease-1α (IRE1α)/spliced X-box–binding protein 1/Runx2 pathway, and induced inflammatory responses through IRE1α/c-Jun N-terminal kinase and IRE1α/nuclear factor kappa-light-chain-enhancer of activated B cells signaling in VICs. Inhibition of ER stress by either tauroursodeoxycholic acid or 4-phenyl butyric acid could both suppress oxLDL–induced osteoblastic differentiation and inflammatory responses in VICs. CONCLUSIONS—These data provide novel evidence that ER stress participates in AV calcification development, and suggest that ER stress may be a novel target for AV calcification prevention and treatment.</abstract><cop>United States</cop><pub>American Heart Association, Inc</pub><pmid>23928865</pmid><doi>10.1161/ATVBAHA.112.300226</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1079-5642
ispartof Arteriosclerosis, thrombosis, and vascular biology, 2013-10, Vol.33 (10), p.2345-2354
issn 1079-5642
1524-4636
language eng
recordid cdi_proquest_miscellaneous_1443399179
source MEDLINE; Journals@Ovid Complete; Alma/SFX Local Collection
subjects Aged
Animals
Aortic Valve - drug effects
Aortic Valve - metabolism
Aortic Valve - pathology
Aortic Valve Stenosis - etiology
Aortic Valve Stenosis - genetics
Aortic Valve Stenosis - metabolism
Aortic Valve Stenosis - pathology
Aortic Valve Stenosis - prevention & control
Apolipoproteins E - deficiency
Apolipoproteins E - genetics
Calcinosis - etiology
Calcinosis - genetics
Calcinosis - metabolism
Calcinosis - pathology
Calcinosis - prevention & control
Calcium - metabolism
Cell Differentiation
Cells, Cultured
Disease Models, Animal
Endoplasmic Reticulum - drug effects
Endoplasmic Reticulum - metabolism
Endoplasmic Reticulum - pathology
Endoplasmic Reticulum Stress - drug effects
Female
Humans
Hypercholesterolemia - complications
Hypercholesterolemia - drug therapy
Hypercholesterolemia - genetics
Hypercholesterolemia - metabolism
Hypercholesterolemia - pathology
Inflammation - etiology
Inflammation - metabolism
Inflammation - pathology
Inflammation - prevention & control
Inflammation Mediators - metabolism
Intracellular Signaling Peptides and Proteins - genetics
Intracellular Signaling Peptides and Proteins - metabolism
Lipoproteins, LDL - metabolism
Male
Mice
Mice, Knockout
Middle Aged
Osteoblasts - metabolism
Osteoblasts - pathology
Phenylbutyrates - pharmacology
Rabbits
RNA Interference
Signal Transduction
Swine
Taurochenodeoxycholic Acid - pharmacology
Transfection
title Endoplasmic Reticulum Stress Participates in Aortic Valve Calcification in Hypercholesterolemic Animals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A46%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endoplasmic%20Reticulum%20Stress%20Participates%20in%20Aortic%20Valve%20Calcification%20in%20Hypercholesterolemic%20Animals&rft.jtitle=Arteriosclerosis,%20thrombosis,%20and%20vascular%20biology&rft.au=Cai,%20Zhejun&rft.date=2013-10&rft.volume=33&rft.issue=10&rft.spage=2345&rft.epage=2354&rft.pages=2345-2354&rft.issn=1079-5642&rft.eissn=1524-4636&rft_id=info:doi/10.1161/ATVBAHA.112.300226&rft_dat=%3Cproquest_cross%3E1443399179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443399179&rft_id=info:pmid/23928865&rfr_iscdi=true