Blood viscometer applying electromagnetically spinning method
Viscosity is an important parameter which affects hemodynamics during extracorporeal circulation and long-term cardiac support. In this study, we have aimed to develop a novel viscometer with which we can easily measure blood viscosity by applying the electromagnetically spinning (EMS) method. In th...
Gespeichert in:
Veröffentlicht in: | Journal of artificial organs 2013-09, Vol.16 (3), p.359-367 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 367 |
---|---|
container_issue | 3 |
container_start_page | 359 |
container_title | Journal of artificial organs |
container_volume | 16 |
creator | Fukunaga, Kazuyoshi Onuki, Masaya Ohtsuka, Yoshinori Hirano, Taichi Sakai, Keiji Ohgoe, Yasuharu Katoh, Ayako Yaguchi, Toshiyuki Funakubo, Akio Fukui, Yasuhiro |
description | Viscosity is an important parameter which affects hemodynamics during extracorporeal circulation and long-term cardiac support. In this study, we have aimed to develop a novel viscometer with which we can easily measure blood viscosity by applying the electromagnetically spinning (EMS) method. In the EMS method, we can rotate an aluminum ball 2 mm in diameter indirectly in a test tube with 0.3 ml sample of a liquid by utilizing the moment caused by the Lorentz force as well as separate the test tube from the viscometer body. First, we calibrated the EMS viscometer by means of liquid samples with known viscosities and computational fluid dynamics. Then, when we measured the viscosity of 9.4 mPa s silicone oil in order to evaluate the performance of the EMS viscometer, the mean viscosity was found to be 9.55 ± 0.10 mPa s at available shear rates from 10 to 240 s
−1
. Finally, we measured the viscosity of bovine blood. We prepared four blood samples whose hematocrit levels were adjusted to 23, 45, 50, and 70 % and a plasma sample without hemocyte components. As a result, the measurements of blood viscosities showed obedience to Casson’s equation. We found that the viscosity was approximately constant in Newtonian silicone oil, whereas the viscosity decreased with increasing shear rate in non-Newtonian bovine blood. These results suggest that the EMS viscometer will be useful to measure blood viscosity at the clinical site. |
doi_str_mv | 10.1007/s10047-013-0707-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1443397876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1443369313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-9b287f6dc18c3a3480f95607c274825f06d4934aad58949cb65d5e25a0651f283</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYMozjj6A9xIwY2baN5pFi508AUDbnQdMmk6dmibmnSE-femdBQRBDc3F-6Xc25yADjF6BIjJK9iqkxChClEEklI98AUC6wgUojtp55RBiUhagKOYlwjhCWX6BBMCOWSK8mm4Pq29r7IPqpofeN6FzLTdfW2aleZq53tg2_MqnV9ZU1db7PYVW07DBP75otjcFCaOrqT3TkDr_d3L_NHuHh-eJrfLKBlivdQLUkuS1FYnFtqKMtRqbhA0hLJcsJLJAqmKDOm4Lliyi4FL7gj3CDBcUlyOgMXo24X_PvGxV43aWFX16Z1fhM1ZoxSJXMp_ocKRTFN6PkvdO03oU0PSRRVWAlBB288Ujb4GIMrdReqxoStxkgPMegxBp1i0EMMelA-2ylvlo0rvm98_XsCyAjENGpXLvyw_lP1ExLskHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439196638</pqid></control><display><type>article</type><title>Blood viscometer applying electromagnetically spinning method</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Fukunaga, Kazuyoshi ; Onuki, Masaya ; Ohtsuka, Yoshinori ; Hirano, Taichi ; Sakai, Keiji ; Ohgoe, Yasuharu ; Katoh, Ayako ; Yaguchi, Toshiyuki ; Funakubo, Akio ; Fukui, Yasuhiro</creator><creatorcontrib>Fukunaga, Kazuyoshi ; Onuki, Masaya ; Ohtsuka, Yoshinori ; Hirano, Taichi ; Sakai, Keiji ; Ohgoe, Yasuharu ; Katoh, Ayako ; Yaguchi, Toshiyuki ; Funakubo, Akio ; Fukui, Yasuhiro</creatorcontrib><description>Viscosity is an important parameter which affects hemodynamics during extracorporeal circulation and long-term cardiac support. In this study, we have aimed to develop a novel viscometer with which we can easily measure blood viscosity by applying the electromagnetically spinning (EMS) method. In the EMS method, we can rotate an aluminum ball 2 mm in diameter indirectly in a test tube with 0.3 ml sample of a liquid by utilizing the moment caused by the Lorentz force as well as separate the test tube from the viscometer body. First, we calibrated the EMS viscometer by means of liquid samples with known viscosities and computational fluid dynamics. Then, when we measured the viscosity of 9.4 mPa s silicone oil in order to evaluate the performance of the EMS viscometer, the mean viscosity was found to be 9.55 ± 0.10 mPa s at available shear rates from 10 to 240 s
−1
. Finally, we measured the viscosity of bovine blood. We prepared four blood samples whose hematocrit levels were adjusted to 23, 45, 50, and 70 % and a plasma sample without hemocyte components. As a result, the measurements of blood viscosities showed obedience to Casson’s equation. We found that the viscosity was approximately constant in Newtonian silicone oil, whereas the viscosity decreased with increasing shear rate in non-Newtonian bovine blood. These results suggest that the EMS viscometer will be useful to measure blood viscosity at the clinical site.</description><identifier>ISSN: 1434-7229</identifier><identifier>EISSN: 1619-0904</identifier><identifier>DOI: 10.1007/s10047-013-0707-3</identifier><identifier>PMID: 23575974</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Animals ; Biomedical Engineering and Bioengineering ; Blood Viscosity - physiology ; Calibration ; Cardiac Surgery ; Cattle ; Electromagnetic Phenomena ; Hemorheology - physiology ; Medicine ; Medicine & Public Health ; Nephrology ; Original Article</subject><ispartof>Journal of artificial organs, 2013-09, Vol.16 (3), p.359-367</ispartof><rights>The Japanese Society for Artificial Organs 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-9b287f6dc18c3a3480f95607c274825f06d4934aad58949cb65d5e25a0651f283</citedby><cites>FETCH-LOGICAL-c495t-9b287f6dc18c3a3480f95607c274825f06d4934aad58949cb65d5e25a0651f283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10047-013-0707-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10047-013-0707-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23575974$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fukunaga, Kazuyoshi</creatorcontrib><creatorcontrib>Onuki, Masaya</creatorcontrib><creatorcontrib>Ohtsuka, Yoshinori</creatorcontrib><creatorcontrib>Hirano, Taichi</creatorcontrib><creatorcontrib>Sakai, Keiji</creatorcontrib><creatorcontrib>Ohgoe, Yasuharu</creatorcontrib><creatorcontrib>Katoh, Ayako</creatorcontrib><creatorcontrib>Yaguchi, Toshiyuki</creatorcontrib><creatorcontrib>Funakubo, Akio</creatorcontrib><creatorcontrib>Fukui, Yasuhiro</creatorcontrib><title>Blood viscometer applying electromagnetically spinning method</title><title>Journal of artificial organs</title><addtitle>J Artif Organs</addtitle><addtitle>J Artif Organs</addtitle><description>Viscosity is an important parameter which affects hemodynamics during extracorporeal circulation and long-term cardiac support. In this study, we have aimed to develop a novel viscometer with which we can easily measure blood viscosity by applying the electromagnetically spinning (EMS) method. In the EMS method, we can rotate an aluminum ball 2 mm in diameter indirectly in a test tube with 0.3 ml sample of a liquid by utilizing the moment caused by the Lorentz force as well as separate the test tube from the viscometer body. First, we calibrated the EMS viscometer by means of liquid samples with known viscosities and computational fluid dynamics. Then, when we measured the viscosity of 9.4 mPa s silicone oil in order to evaluate the performance of the EMS viscometer, the mean viscosity was found to be 9.55 ± 0.10 mPa s at available shear rates from 10 to 240 s
−1
. Finally, we measured the viscosity of bovine blood. We prepared four blood samples whose hematocrit levels were adjusted to 23, 45, 50, and 70 % and a plasma sample without hemocyte components. As a result, the measurements of blood viscosities showed obedience to Casson’s equation. We found that the viscosity was approximately constant in Newtonian silicone oil, whereas the viscosity decreased with increasing shear rate in non-Newtonian bovine blood. These results suggest that the EMS viscometer will be useful to measure blood viscosity at the clinical site.</description><subject>Animals</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Blood Viscosity - physiology</subject><subject>Calibration</subject><subject>Cardiac Surgery</subject><subject>Cattle</subject><subject>Electromagnetic Phenomena</subject><subject>Hemorheology - physiology</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Nephrology</subject><subject>Original Article</subject><issn>1434-7229</issn><issn>1619-0904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkUtLxDAUhYMozjj6A9xIwY2baN5pFi508AUDbnQdMmk6dmibmnSE-femdBQRBDc3F-6Xc25yADjF6BIjJK9iqkxChClEEklI98AUC6wgUojtp55RBiUhagKOYlwjhCWX6BBMCOWSK8mm4Pq29r7IPqpofeN6FzLTdfW2aleZq53tg2_MqnV9ZU1db7PYVW07DBP75otjcFCaOrqT3TkDr_d3L_NHuHh-eJrfLKBlivdQLUkuS1FYnFtqKMtRqbhA0hLJcsJLJAqmKDOm4Lliyi4FL7gj3CDBcUlyOgMXo24X_PvGxV43aWFX16Z1fhM1ZoxSJXMp_ocKRTFN6PkvdO03oU0PSRRVWAlBB288Ujb4GIMrdReqxoStxkgPMegxBp1i0EMMelA-2ylvlo0rvm98_XsCyAjENGpXLvyw_lP1ExLskHA</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Fukunaga, Kazuyoshi</creator><creator>Onuki, Masaya</creator><creator>Ohtsuka, Yoshinori</creator><creator>Hirano, Taichi</creator><creator>Sakai, Keiji</creator><creator>Ohgoe, Yasuharu</creator><creator>Katoh, Ayako</creator><creator>Yaguchi, Toshiyuki</creator><creator>Funakubo, Akio</creator><creator>Fukui, Yasuhiro</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20130901</creationdate><title>Blood viscometer applying electromagnetically spinning method</title><author>Fukunaga, Kazuyoshi ; Onuki, Masaya ; Ohtsuka, Yoshinori ; Hirano, Taichi ; Sakai, Keiji ; Ohgoe, Yasuharu ; Katoh, Ayako ; Yaguchi, Toshiyuki ; Funakubo, Akio ; Fukui, Yasuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-9b287f6dc18c3a3480f95607c274825f06d4934aad58949cb65d5e25a0651f283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Blood Viscosity - physiology</topic><topic>Calibration</topic><topic>Cardiac Surgery</topic><topic>Cattle</topic><topic>Electromagnetic Phenomena</topic><topic>Hemorheology - physiology</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Nephrology</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fukunaga, Kazuyoshi</creatorcontrib><creatorcontrib>Onuki, Masaya</creatorcontrib><creatorcontrib>Ohtsuka, Yoshinori</creatorcontrib><creatorcontrib>Hirano, Taichi</creatorcontrib><creatorcontrib>Sakai, Keiji</creatorcontrib><creatorcontrib>Ohgoe, Yasuharu</creatorcontrib><creatorcontrib>Katoh, Ayako</creatorcontrib><creatorcontrib>Yaguchi, Toshiyuki</creatorcontrib><creatorcontrib>Funakubo, Akio</creatorcontrib><creatorcontrib>Fukui, Yasuhiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of artificial organs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fukunaga, Kazuyoshi</au><au>Onuki, Masaya</au><au>Ohtsuka, Yoshinori</au><au>Hirano, Taichi</au><au>Sakai, Keiji</au><au>Ohgoe, Yasuharu</au><au>Katoh, Ayako</au><au>Yaguchi, Toshiyuki</au><au>Funakubo, Akio</au><au>Fukui, Yasuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blood viscometer applying electromagnetically spinning method</atitle><jtitle>Journal of artificial organs</jtitle><stitle>J Artif Organs</stitle><addtitle>J Artif Organs</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>16</volume><issue>3</issue><spage>359</spage><epage>367</epage><pages>359-367</pages><issn>1434-7229</issn><eissn>1619-0904</eissn><abstract>Viscosity is an important parameter which affects hemodynamics during extracorporeal circulation and long-term cardiac support. In this study, we have aimed to develop a novel viscometer with which we can easily measure blood viscosity by applying the electromagnetically spinning (EMS) method. In the EMS method, we can rotate an aluminum ball 2 mm in diameter indirectly in a test tube with 0.3 ml sample of a liquid by utilizing the moment caused by the Lorentz force as well as separate the test tube from the viscometer body. First, we calibrated the EMS viscometer by means of liquid samples with known viscosities and computational fluid dynamics. Then, when we measured the viscosity of 9.4 mPa s silicone oil in order to evaluate the performance of the EMS viscometer, the mean viscosity was found to be 9.55 ± 0.10 mPa s at available shear rates from 10 to 240 s
−1
. Finally, we measured the viscosity of bovine blood. We prepared four blood samples whose hematocrit levels were adjusted to 23, 45, 50, and 70 % and a plasma sample without hemocyte components. As a result, the measurements of blood viscosities showed obedience to Casson’s equation. We found that the viscosity was approximately constant in Newtonian silicone oil, whereas the viscosity decreased with increasing shear rate in non-Newtonian bovine blood. These results suggest that the EMS viscometer will be useful to measure blood viscosity at the clinical site.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><pmid>23575974</pmid><doi>10.1007/s10047-013-0707-3</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-7229 |
ispartof | Journal of artificial organs, 2013-09, Vol.16 (3), p.359-367 |
issn | 1434-7229 1619-0904 |
language | eng |
recordid | cdi_proquest_miscellaneous_1443397876 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animals Biomedical Engineering and Bioengineering Blood Viscosity - physiology Calibration Cardiac Surgery Cattle Electromagnetic Phenomena Hemorheology - physiology Medicine Medicine & Public Health Nephrology Original Article |
title | Blood viscometer applying electromagnetically spinning method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A02%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blood%20viscometer%20applying%20electromagnetically%20spinning%20method&rft.jtitle=Journal%20of%20artificial%20organs&rft.au=Fukunaga,%20Kazuyoshi&rft.date=2013-09-01&rft.volume=16&rft.issue=3&rft.spage=359&rft.epage=367&rft.pages=359-367&rft.issn=1434-7229&rft.eissn=1619-0904&rft_id=info:doi/10.1007/s10047-013-0707-3&rft_dat=%3Cproquest_cross%3E1443369313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439196638&rft_id=info:pmid/23575974&rfr_iscdi=true |