Amplification of Surface-Initiated Ring-Opening Metathesis Polymerization of 5‑(Perfluoro‑n‑alkyl)norbornenes by Macroinitiation

This article reports the enhanced rate of the surface-initiated polymerization (SIP) of 5-(perfluoro-n-alkyl)norbornenes (NBFn) by combining two SIP techniques, namely surface-initiated atom-transfer polymerization (SI-ATRP) to grow a macroinitiator and surface-initiated ring-opening metathesis poly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2013-10, Vol.29 (40), p.12560-12571
Hauptverfasser: Escobar, Carlos A, Harl, Robert R, Maxwell, Kathryn E, Mahfuz, Nur N, Rogers, Bridget R, Jennings, G. Kane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12571
container_issue 40
container_start_page 12560
container_title Langmuir
container_volume 29
creator Escobar, Carlos A
Harl, Robert R
Maxwell, Kathryn E
Mahfuz, Nur N
Rogers, Bridget R
Jennings, G. Kane
description This article reports the enhanced rate of the surface-initiated polymerization (SIP) of 5-(perfluoro-n-alkyl)norbornenes (NBFn) by combining two SIP techniques, namely surface-initiated atom-transfer polymerization (SI-ATRP) to grow a macroinitiator and surface-initiated ring-opening metathesis polymerization (SI-ROMP) to produce the final coating. This polymerization approach promotes the rapid growth of dense partially fluorinated coatings that are highly hydrophobic and oleophobic and yield thicknesses from 4–12 μm. Specifically, the growth rate and the limiting thickness of pNBFn with different side chain lengths (n = 4, 6, 8, and 10) at various monomer concentrations and temperatures are evaluated through two approaches: growing the polymer from an initiator-terminated monolayer (control) or from a modified poly(2-hydroxyethyl methacrylate) (PHEMA) macroinitiator. X-ray photoelectron spectroscopy (XPS) analysis shows that 38% of the hydroxyl termini in the macroinitiator react with a norbornenyl diacid chloride (NBDAC) molecule, and 7% of such anchored norbornenyl groups react with a catalyst molecule. The kinetic data have been modeled to determine the propagation velocity and the termination rate constant. The PHEMA macroinitiator provides thicker films and faster growth as compared to the monolayer, achieving a 12 μm thick coating of pNBF8 in 15 min. Increasing the monomer side chain length, n, from 4 to 10 improves the growth rate and the limiting polymer thickness. Performing the polymerization process at higher temperature increases the growth rate and the limiting thickness as evidenced by an increase in the film growth rate constant. Arrhenius plots show that the reactions involved in the macroinitiation process exhibit lower activation energies than those formed from a monolayer. Electrochemical impedance spectroscopy reveals that the films exhibit resistance against ion transport in excess of 1 × 1010 Ω·cm2.
doi_str_mv 10.1021/la402173z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1443388647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1443388647</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-38a6a78b7deecc90454869ed648a6a38a5fd1e2172a3fc24d8b95f618e1055ef3</originalsourceid><addsrcrecordid>eNptkL9O3TAUhy3UCm4pQ18AZakEQ1o7thNnRIgWJBAIyhydOMfF1LFv7WS4TJ269xV5khrd28vSwfrJOt_5o4-QD4x-YrRinx2IHA1_2iELJitaSlU1b8iCNoKXjaj5HnmX0iOltOWi3SV7VeZFS_mC_D4Zl84aq2GywRfBFHdzNKCxvPB2sjDhUNxa_728XqLPWVzhBNMDJpuKm-BWI0b7tO2Vz7_-HN1gNG4OMeSPzw_cj5U79iH2IXr0mIp-VVyBjsGuV-Tm9-StAZfwYJP75P7L2bfT8_Ly-uvF6cllCVzIqeQKamhU3wyIWrdUSKHqFodavBRyVZqBYVZRATe6EoPqW2lqppBRKdHwfXK0nruM4eeMaepGmzQ6Bx7DnDomBOdK1aLJ6PEazYemFNF0y2hHiKuO0e5Fe7fVntnDzdi5H3HYkv88Z-DjBoCkwZkIXtv0yjWKVYzRVw506h7DHH228Z-FfwG5-Jui</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443388647</pqid></control><display><type>article</type><title>Amplification of Surface-Initiated Ring-Opening Metathesis Polymerization of 5‑(Perfluoro‑n‑alkyl)norbornenes by Macroinitiation</title><source>ACS Publications</source><creator>Escobar, Carlos A ; Harl, Robert R ; Maxwell, Kathryn E ; Mahfuz, Nur N ; Rogers, Bridget R ; Jennings, G. Kane</creator><creatorcontrib>Escobar, Carlos A ; Harl, Robert R ; Maxwell, Kathryn E ; Mahfuz, Nur N ; Rogers, Bridget R ; Jennings, G. Kane</creatorcontrib><description>This article reports the enhanced rate of the surface-initiated polymerization (SIP) of 5-(perfluoro-n-alkyl)norbornenes (NBFn) by combining two SIP techniques, namely surface-initiated atom-transfer polymerization (SI-ATRP) to grow a macroinitiator and surface-initiated ring-opening metathesis polymerization (SI-ROMP) to produce the final coating. This polymerization approach promotes the rapid growth of dense partially fluorinated coatings that are highly hydrophobic and oleophobic and yield thicknesses from 4–12 μm. Specifically, the growth rate and the limiting thickness of pNBFn with different side chain lengths (n = 4, 6, 8, and 10) at various monomer concentrations and temperatures are evaluated through two approaches: growing the polymer from an initiator-terminated monolayer (control) or from a modified poly(2-hydroxyethyl methacrylate) (PHEMA) macroinitiator. X-ray photoelectron spectroscopy (XPS) analysis shows that 38% of the hydroxyl termini in the macroinitiator react with a norbornenyl diacid chloride (NBDAC) molecule, and 7% of such anchored norbornenyl groups react with a catalyst molecule. The kinetic data have been modeled to determine the propagation velocity and the termination rate constant. The PHEMA macroinitiator provides thicker films and faster growth as compared to the monolayer, achieving a 12 μm thick coating of pNBF8 in 15 min. Increasing the monomer side chain length, n, from 4 to 10 improves the growth rate and the limiting polymer thickness. Performing the polymerization process at higher temperature increases the growth rate and the limiting thickness as evidenced by an increase in the film growth rate constant. Arrhenius plots show that the reactions involved in the macroinitiation process exhibit lower activation energies than those formed from a monolayer. Electrochemical impedance spectroscopy reveals that the films exhibit resistance against ion transport in excess of 1 × 1010 Ω·cm2.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la402173z</identifier><identifier>PMID: 24024903</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Catalysis ; Chemistry ; Electrochemistry ; Exact sciences and technology ; General and physical chemistry ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Langmuir, 2013-10, Vol.29 (40), p.12560-12571</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-38a6a78b7deecc90454869ed648a6a38a5fd1e2172a3fc24d8b95f618e1055ef3</citedby><cites>FETCH-LOGICAL-a345t-38a6a78b7deecc90454869ed648a6a38a5fd1e2172a3fc24d8b95f618e1055ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la402173z$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la402173z$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27812110$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24024903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Escobar, Carlos A</creatorcontrib><creatorcontrib>Harl, Robert R</creatorcontrib><creatorcontrib>Maxwell, Kathryn E</creatorcontrib><creatorcontrib>Mahfuz, Nur N</creatorcontrib><creatorcontrib>Rogers, Bridget R</creatorcontrib><creatorcontrib>Jennings, G. Kane</creatorcontrib><title>Amplification of Surface-Initiated Ring-Opening Metathesis Polymerization of 5‑(Perfluoro‑n‑alkyl)norbornenes by Macroinitiation</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>This article reports the enhanced rate of the surface-initiated polymerization (SIP) of 5-(perfluoro-n-alkyl)norbornenes (NBFn) by combining two SIP techniques, namely surface-initiated atom-transfer polymerization (SI-ATRP) to grow a macroinitiator and surface-initiated ring-opening metathesis polymerization (SI-ROMP) to produce the final coating. This polymerization approach promotes the rapid growth of dense partially fluorinated coatings that are highly hydrophobic and oleophobic and yield thicknesses from 4–12 μm. Specifically, the growth rate and the limiting thickness of pNBFn with different side chain lengths (n = 4, 6, 8, and 10) at various monomer concentrations and temperatures are evaluated through two approaches: growing the polymer from an initiator-terminated monolayer (control) or from a modified poly(2-hydroxyethyl methacrylate) (PHEMA) macroinitiator. X-ray photoelectron spectroscopy (XPS) analysis shows that 38% of the hydroxyl termini in the macroinitiator react with a norbornenyl diacid chloride (NBDAC) molecule, and 7% of such anchored norbornenyl groups react with a catalyst molecule. The kinetic data have been modeled to determine the propagation velocity and the termination rate constant. The PHEMA macroinitiator provides thicker films and faster growth as compared to the monolayer, achieving a 12 μm thick coating of pNBF8 in 15 min. Increasing the monomer side chain length, n, from 4 to 10 improves the growth rate and the limiting polymer thickness. Performing the polymerization process at higher temperature increases the growth rate and the limiting thickness as evidenced by an increase in the film growth rate constant. Arrhenius plots show that the reactions involved in the macroinitiation process exhibit lower activation energies than those formed from a monolayer. Electrochemical impedance spectroscopy reveals that the films exhibit resistance against ion transport in excess of 1 × 1010 Ω·cm2.</description><subject>Catalysis</subject><subject>Chemistry</subject><subject>Electrochemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkL9O3TAUhy3UCm4pQ18AZakEQ1o7thNnRIgWJBAIyhydOMfF1LFv7WS4TJ269xV5khrd28vSwfrJOt_5o4-QD4x-YrRinx2IHA1_2iELJitaSlU1b8iCNoKXjaj5HnmX0iOltOWi3SV7VeZFS_mC_D4Zl84aq2GywRfBFHdzNKCxvPB2sjDhUNxa_728XqLPWVzhBNMDJpuKm-BWI0b7tO2Vz7_-HN1gNG4OMeSPzw_cj5U79iH2IXr0mIp-VVyBjsGuV-Tm9-StAZfwYJP75P7L2bfT8_Ly-uvF6cllCVzIqeQKamhU3wyIWrdUSKHqFodavBRyVZqBYVZRATe6EoPqW2lqppBRKdHwfXK0nruM4eeMaepGmzQ6Bx7DnDomBOdK1aLJ6PEazYemFNF0y2hHiKuO0e5Fe7fVntnDzdi5H3HYkv88Z-DjBoCkwZkIXtv0yjWKVYzRVw506h7DHH228Z-FfwG5-Jui</recordid><startdate>20131008</startdate><enddate>20131008</enddate><creator>Escobar, Carlos A</creator><creator>Harl, Robert R</creator><creator>Maxwell, Kathryn E</creator><creator>Mahfuz, Nur N</creator><creator>Rogers, Bridget R</creator><creator>Jennings, G. Kane</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20131008</creationdate><title>Amplification of Surface-Initiated Ring-Opening Metathesis Polymerization of 5‑(Perfluoro‑n‑alkyl)norbornenes by Macroinitiation</title><author>Escobar, Carlos A ; Harl, Robert R ; Maxwell, Kathryn E ; Mahfuz, Nur N ; Rogers, Bridget R ; Jennings, G. Kane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-38a6a78b7deecc90454869ed648a6a38a5fd1e2172a3fc24d8b95f618e1055ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Catalysis</topic><topic>Chemistry</topic><topic>Electrochemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escobar, Carlos A</creatorcontrib><creatorcontrib>Harl, Robert R</creatorcontrib><creatorcontrib>Maxwell, Kathryn E</creatorcontrib><creatorcontrib>Mahfuz, Nur N</creatorcontrib><creatorcontrib>Rogers, Bridget R</creatorcontrib><creatorcontrib>Jennings, G. Kane</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escobar, Carlos A</au><au>Harl, Robert R</au><au>Maxwell, Kathryn E</au><au>Mahfuz, Nur N</au><au>Rogers, Bridget R</au><au>Jennings, G. Kane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amplification of Surface-Initiated Ring-Opening Metathesis Polymerization of 5‑(Perfluoro‑n‑alkyl)norbornenes by Macroinitiation</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2013-10-08</date><risdate>2013</risdate><volume>29</volume><issue>40</issue><spage>12560</spage><epage>12571</epage><pages>12560-12571</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>This article reports the enhanced rate of the surface-initiated polymerization (SIP) of 5-(perfluoro-n-alkyl)norbornenes (NBFn) by combining two SIP techniques, namely surface-initiated atom-transfer polymerization (SI-ATRP) to grow a macroinitiator and surface-initiated ring-opening metathesis polymerization (SI-ROMP) to produce the final coating. This polymerization approach promotes the rapid growth of dense partially fluorinated coatings that are highly hydrophobic and oleophobic and yield thicknesses from 4–12 μm. Specifically, the growth rate and the limiting thickness of pNBFn with different side chain lengths (n = 4, 6, 8, and 10) at various monomer concentrations and temperatures are evaluated through two approaches: growing the polymer from an initiator-terminated monolayer (control) or from a modified poly(2-hydroxyethyl methacrylate) (PHEMA) macroinitiator. X-ray photoelectron spectroscopy (XPS) analysis shows that 38% of the hydroxyl termini in the macroinitiator react with a norbornenyl diacid chloride (NBDAC) molecule, and 7% of such anchored norbornenyl groups react with a catalyst molecule. The kinetic data have been modeled to determine the propagation velocity and the termination rate constant. The PHEMA macroinitiator provides thicker films and faster growth as compared to the monolayer, achieving a 12 μm thick coating of pNBF8 in 15 min. Increasing the monomer side chain length, n, from 4 to 10 improves the growth rate and the limiting polymer thickness. Performing the polymerization process at higher temperature increases the growth rate and the limiting thickness as evidenced by an increase in the film growth rate constant. Arrhenius plots show that the reactions involved in the macroinitiation process exhibit lower activation energies than those formed from a monolayer. Electrochemical impedance spectroscopy reveals that the films exhibit resistance against ion transport in excess of 1 × 1010 Ω·cm2.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24024903</pmid><doi>10.1021/la402173z</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2013-10, Vol.29 (40), p.12560-12571
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1443388647
source ACS Publications
subjects Catalysis
Chemistry
Electrochemistry
Exact sciences and technology
General and physical chemistry
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Amplification of Surface-Initiated Ring-Opening Metathesis Polymerization of 5‑(Perfluoro‑n‑alkyl)norbornenes by Macroinitiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T16%3A25%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amplification%20of%20Surface-Initiated%20Ring-Opening%20Metathesis%20Polymerization%20of%205%E2%80%91(Perfluoro%E2%80%91n%E2%80%91alkyl)norbornenes%20by%20Macroinitiation&rft.jtitle=Langmuir&rft.au=Escobar,%20Carlos%20A&rft.date=2013-10-08&rft.volume=29&rft.issue=40&rft.spage=12560&rft.epage=12571&rft.pages=12560-12571&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la402173z&rft_dat=%3Cproquest_cross%3E1443388647%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443388647&rft_id=info:pmid/24024903&rfr_iscdi=true