Finding the peak velocity in a flow from its doppler spectrum
The signal backscattered by blood cells crossing a sample volume produces a Doppler power spectrum determined by the scatterers' velocity distribution. Because of intrinsic spectral broadening, the peak Doppler frequency observed does not correspond to the peak velocity in the flow. Several met...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2013-10, Vol.60 (10), p.2079-2088 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2088 |
---|---|
container_issue | 10 |
container_start_page | 2079 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 60 |
creator | Vilkomerson, David Ricci, Stefano Tortoli, Piero |
description | The signal backscattered by blood cells crossing a sample volume produces a Doppler power spectrum determined by the scatterers' velocity distribution. Because of intrinsic spectral broadening, the peak Doppler frequency observed does not correspond to the peak velocity in the flow. Several methods have been proposed for estimating the maximum velocity component-an important clinical parameter-but these methods are approximate, based on heuristic thresholds that can be inaccurate and strongly affected by noise. Reported here is a method of modeling the Doppler power spectrum of a flow, and from that model, determining what Doppler frequency on the descending slope of the power spectrum corresponds to the peak velocity in the insonated flow. It is shown that, for a fully insonated flow with a parabolic velocity distribution, the peak velocity corresponds to the Doppler frequency at the half-power point on that slope. The method is demonstrated to be robust with regard to the effects of noise and valid for a wide range of acquisition parameters. Experimental maximum velocity measurements on steady flows with rates between 100 and 300 mL/min (peak velocity range 6.6 cm/s to 19.9 cm/s) show a mean bias error that is smaller than 1%. |
doi_str_mv | 10.1109/TUFFC.2013.2798 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1443381570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6604539</ieee_id><sourcerecordid>1448722238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-223b24ebef47a256b530a08204314634948bd3266bc2043ce2dde6e9505f4d2a3</originalsourceid><addsrcrecordid>eNqNkTlPw0AQhVcIREKgpkBCK9HQOJm97HVBgSICSJFoktryMYYNvti1Qfn32CSkoKIaaeabN3rzCLlkMGUMwtlqvVjMpxyYmPIg1EdkzBRXng6VOiZj0Fp5AhiMyJlzGwAmZchPyYhL0Iwrf0zuFqbKTPVK2zekDcbv9BOLOjXtlpqKxjQv6i-a27qkpnU0q5umQEtdg2lru_KcnORx4fBiXydkvXhYzZ-85cvj8_x-6aUi0K3HuUi4xARzGcT92UQJiEFzkIJJX8hQ6iQT3PeTdOilyLMMfQwVqFxmPBYTcrvTbWz90aFro9K4FIsirrDuXNT70gHvz-j_oEJopgLo0Zs_6KbubNUbGSgmIGAwCM52VGpr5yzmUWNNGdttxCAaQoh-QoiGEKIhhH7jeq_bJSVmB_736z1wtQMMIh7Gvg9SiVB8Axsfh8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441307108</pqid></control><display><type>article</type><title>Finding the peak velocity in a flow from its doppler spectrum</title><source>IEEE Electronic Library (IEL)</source><creator>Vilkomerson, David ; Ricci, Stefano ; Tortoli, Piero</creator><creatorcontrib>Vilkomerson, David ; Ricci, Stefano ; Tortoli, Piero</creatorcontrib><description>The signal backscattered by blood cells crossing a sample volume produces a Doppler power spectrum determined by the scatterers' velocity distribution. Because of intrinsic spectral broadening, the peak Doppler frequency observed does not correspond to the peak velocity in the flow. Several methods have been proposed for estimating the maximum velocity component-an important clinical parameter-but these methods are approximate, based on heuristic thresholds that can be inaccurate and strongly affected by noise. Reported here is a method of modeling the Doppler power spectrum of a flow, and from that model, determining what Doppler frequency on the descending slope of the power spectrum corresponds to the peak velocity in the insonated flow. It is shown that, for a fully insonated flow with a parabolic velocity distribution, the peak velocity corresponds to the Doppler frequency at the half-power point on that slope. The method is demonstrated to be robust with regard to the effects of noise and valid for a wide range of acquisition parameters. Experimental maximum velocity measurements on steady flows with rates between 100 and 300 mL/min (peak velocity range 6.6 cm/s to 19.9 cm/s) show a mean bias error that is smaller than 1%.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.2013.2798</identifier><identifier>PMID: 24081256</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Apertures ; Blood ; Blood cells ; Blood Flow Velocity ; Cells (biology) ; Computer Simulation ; Doppler ; Doppler effect ; Estimating ; Kinematics ; Mathematical model ; Models, Cardiovascular ; Noise ; Phantoms, Imaging ; Regional Blood Flow ; Spectra ; Steady flow ; Studies ; Transducers ; Ultrasonography, Doppler - methods ; Velocity distribution</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2013-10, Vol.60 (10), p.2079-2088</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-223b24ebef47a256b530a08204314634948bd3266bc2043ce2dde6e9505f4d2a3</citedby><cites>FETCH-LOGICAL-c378t-223b24ebef47a256b530a08204314634948bd3266bc2043ce2dde6e9505f4d2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6604539$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6604539$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24081256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vilkomerson, David</creatorcontrib><creatorcontrib>Ricci, Stefano</creatorcontrib><creatorcontrib>Tortoli, Piero</creatorcontrib><title>Finding the peak velocity in a flow from its doppler spectrum</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>The signal backscattered by blood cells crossing a sample volume produces a Doppler power spectrum determined by the scatterers' velocity distribution. Because of intrinsic spectral broadening, the peak Doppler frequency observed does not correspond to the peak velocity in the flow. Several methods have been proposed for estimating the maximum velocity component-an important clinical parameter-but these methods are approximate, based on heuristic thresholds that can be inaccurate and strongly affected by noise. Reported here is a method of modeling the Doppler power spectrum of a flow, and from that model, determining what Doppler frequency on the descending slope of the power spectrum corresponds to the peak velocity in the insonated flow. It is shown that, for a fully insonated flow with a parabolic velocity distribution, the peak velocity corresponds to the Doppler frequency at the half-power point on that slope. The method is demonstrated to be robust with regard to the effects of noise and valid for a wide range of acquisition parameters. Experimental maximum velocity measurements on steady flows with rates between 100 and 300 mL/min (peak velocity range 6.6 cm/s to 19.9 cm/s) show a mean bias error that is smaller than 1%.</description><subject>Apertures</subject><subject>Blood</subject><subject>Blood cells</subject><subject>Blood Flow Velocity</subject><subject>Cells (biology)</subject><subject>Computer Simulation</subject><subject>Doppler</subject><subject>Doppler effect</subject><subject>Estimating</subject><subject>Kinematics</subject><subject>Mathematical model</subject><subject>Models, Cardiovascular</subject><subject>Noise</subject><subject>Phantoms, Imaging</subject><subject>Regional Blood Flow</subject><subject>Spectra</subject><subject>Steady flow</subject><subject>Studies</subject><subject>Transducers</subject><subject>Ultrasonography, Doppler - methods</subject><subject>Velocity distribution</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkTlPw0AQhVcIREKgpkBCK9HQOJm97HVBgSICSJFoktryMYYNvti1Qfn32CSkoKIaaeabN3rzCLlkMGUMwtlqvVjMpxyYmPIg1EdkzBRXng6VOiZj0Fp5AhiMyJlzGwAmZchPyYhL0Iwrf0zuFqbKTPVK2zekDcbv9BOLOjXtlpqKxjQv6i-a27qkpnU0q5umQEtdg2lru_KcnORx4fBiXydkvXhYzZ-85cvj8_x-6aUi0K3HuUi4xARzGcT92UQJiEFzkIJJX8hQ6iQT3PeTdOilyLMMfQwVqFxmPBYTcrvTbWz90aFro9K4FIsirrDuXNT70gHvz-j_oEJopgLo0Zs_6KbubNUbGSgmIGAwCM52VGpr5yzmUWNNGdttxCAaQoh-QoiGEKIhhH7jeq_bJSVmB_736z1wtQMMIh7Gvg9SiVB8Axsfh8A</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Vilkomerson, David</creator><creator>Ricci, Stefano</creator><creator>Tortoli, Piero</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20131001</creationdate><title>Finding the peak velocity in a flow from its doppler spectrum</title><author>Vilkomerson, David ; Ricci, Stefano ; Tortoli, Piero</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-223b24ebef47a256b530a08204314634948bd3266bc2043ce2dde6e9505f4d2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Apertures</topic><topic>Blood</topic><topic>Blood cells</topic><topic>Blood Flow Velocity</topic><topic>Cells (biology)</topic><topic>Computer Simulation</topic><topic>Doppler</topic><topic>Doppler effect</topic><topic>Estimating</topic><topic>Kinematics</topic><topic>Mathematical model</topic><topic>Models, Cardiovascular</topic><topic>Noise</topic><topic>Phantoms, Imaging</topic><topic>Regional Blood Flow</topic><topic>Spectra</topic><topic>Steady flow</topic><topic>Studies</topic><topic>Transducers</topic><topic>Ultrasonography, Doppler - methods</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vilkomerson, David</creatorcontrib><creatorcontrib>Ricci, Stefano</creatorcontrib><creatorcontrib>Tortoli, Piero</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vilkomerson, David</au><au>Ricci, Stefano</au><au>Tortoli, Piero</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding the peak velocity in a flow from its doppler spectrum</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>60</volume><issue>10</issue><spage>2079</spage><epage>2088</epage><pages>2079-2088</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>The signal backscattered by blood cells crossing a sample volume produces a Doppler power spectrum determined by the scatterers' velocity distribution. Because of intrinsic spectral broadening, the peak Doppler frequency observed does not correspond to the peak velocity in the flow. Several methods have been proposed for estimating the maximum velocity component-an important clinical parameter-but these methods are approximate, based on heuristic thresholds that can be inaccurate and strongly affected by noise. Reported here is a method of modeling the Doppler power spectrum of a flow, and from that model, determining what Doppler frequency on the descending slope of the power spectrum corresponds to the peak velocity in the insonated flow. It is shown that, for a fully insonated flow with a parabolic velocity distribution, the peak velocity corresponds to the Doppler frequency at the half-power point on that slope. The method is demonstrated to be robust with regard to the effects of noise and valid for a wide range of acquisition parameters. Experimental maximum velocity measurements on steady flows with rates between 100 and 300 mL/min (peak velocity range 6.6 cm/s to 19.9 cm/s) show a mean bias error that is smaller than 1%.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24081256</pmid><doi>10.1109/TUFFC.2013.2798</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2013-10, Vol.60 (10), p.2079-2088 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_1443381570 |
source | IEEE Electronic Library (IEL) |
subjects | Apertures Blood Blood cells Blood Flow Velocity Cells (biology) Computer Simulation Doppler Doppler effect Estimating Kinematics Mathematical model Models, Cardiovascular Noise Phantoms, Imaging Regional Blood Flow Spectra Steady flow Studies Transducers Ultrasonography, Doppler - methods Velocity distribution |
title | Finding the peak velocity in a flow from its doppler spectrum |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20the%20peak%20velocity%20in%20a%20flow%20from%20its%20doppler%20spectrum&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Vilkomerson,%20David&rft.date=2013-10-01&rft.volume=60&rft.issue=10&rft.spage=2079&rft.epage=2088&rft.pages=2079-2088&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.2013.2798&rft_dat=%3Cproquest_RIE%3E1448722238%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441307108&rft_id=info:pmid/24081256&rft_ieee_id=6604539&rfr_iscdi=true |