Overexpression of PeHA1 enhances hydrogen peroxide signaling in salt-stressed Arabidopsis
The plant plasma membrane (PM) H+-ATPase plays a crucial role in controlling K+/Na+ homeostasis under salt stress. Our previous microarray analysis indicated that Populus euphratica retained a higher abundance of PM H+-ATPase transcript versus a salt-sensitive poplar. To clarify the roles of the PM...
Gespeichert in:
Veröffentlicht in: | Plant physiology and biochemistry 2013-10, Vol.71, p.37-48 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48 |
---|---|
container_issue | |
container_start_page | 37 |
container_title | Plant physiology and biochemistry |
container_volume | 71 |
creator | Wang, Meijuan Wang, Yang Sun, Jian Ding, Mingquan Deng, Shurong Hou, Peichen Ma, Xujun Zhang, Yuhong Wang, Feifei Sa, Gang Tan, Yeqing Lang, Tao Li, Jinke Shen, Xin Chen, Shaoliang |
description | The plant plasma membrane (PM) H+-ATPase plays a crucial role in controlling K+/Na+ homeostasis under salt stress. Our previous microarray analysis indicated that Populus euphratica retained a higher abundance of PM H+-ATPase transcript versus a salt-sensitive poplar. To clarify the roles of the PM H+-ATPase in salt sensing and adaptation, we isolated the PM H+-ATPase gene PeHA1 from P. euphratica and introduced it into Arabidopsis thaliana. Compared to wild-type, PeHA1-transgenic Arabidopsis had a greater germination rate, root length, and biomass under NaCl stress (50–150 mM). Ectopic expression of PeHA1 remarkably enhanced the capacity to control the homeostasis of ions and reactive oxygen species in salinized Arabidopsis. Flux data from salinized roots showed that transgenic plants exhibited a more pronounced Na+/H+ antiport and less reduction of K+ influx versus wild-type. Enhanced PM ATP hydrolytic activity, proton pumping, and Na+/H+ antiport in PeHA1-transgenic plants, were consistent to those observed in vivo, i.e., H+ extrusion, external acidification, and Na+ efflux. Activities of the antioxidant enzymes ascorbate peroxidase and catalase were typically higher in transgenic seedlings irrespective of salt concentration. In transgenic Arabidopsis roots, H2O2 production was higher under control conditions and increased more rapidly than wild-type when plants were subjected to NaCl treatment. Interestingly, transgenic plants were unable to control K+/Na+ homeostasis when salt-induced H2O2 production was inhibited by diphenylene iodonium, an inhibitor of NADPH oxidase. These observations suggest that PeHA1 accelerates salt tolerance partially through rapid H2O2 production upon salt treatment, which triggers adjustments in K+/Na+ homeostasis and antioxidant defense in Arabidopsis.
•PeHA1, the PM H+-ATPase from Populus euphratica, confers salt tolerance in Arabidopsis.•PeHA1 triggers a H2O2 signaling pathway to mediate K+/Na+ homeostasis under salinity.•PeHA1 triggers a H2O2 signaling pathway mediating antioxidant defense in Arabidopsis. |
doi_str_mv | 10.1016/j.plaphy.2013.06.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1443381334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0981942813002519</els_id><sourcerecordid>1443381334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-5368e90f40730f54e04bff51d4f6cd71ba3c44f7a5d0dd1483ac91439398a1b3</originalsourceid><addsrcrecordid>eNp90E9v0zAYx3ELgVgZvAOEfEHikuB_ieMLUjUNhjRpHHbhZDn249ZVGgc_6bS-e1K1wI2TL9-fbX0Iec9ZzRlvP-_qaXDT9lgLxmXN2poJ9oKseKdlJVrDXpIVMx2vjBLdFXmDuGOMCaXla3IlZKeFVnxFfj48QYHnqQBiyiPNkf6AuzWnMG7d6AHp9hhK3sBIJyj5OQWgmDajG9K4oWmk6Ia5wvm0h0DXxfUp5AkTviWvohsQ3l3Oa_L49fbx5q66f_j2_WZ9X3lpxFw1su3AsKiYliw2CpjqY2x4ULH1QfPeSa9U1K4JLASuOum84UoaaTrHe3lNPp2vnUr-dQCc7T6hh2FwI-QDWq6UlB2XUi2pOqe-ZMQC0U4l7V05Ws7sydTu7NnUnkwta-1iusw-XF449HsIf0d_EJfg4yVw6N0QywKX8F-ntTGiEUv35dzBwvGUoFj0CRbkkAr42Yac_v-T31yJl2I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443381334</pqid></control><display><type>article</type><title>Overexpression of PeHA1 enhances hydrogen peroxide signaling in salt-stressed Arabidopsis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wang, Meijuan ; Wang, Yang ; Sun, Jian ; Ding, Mingquan ; Deng, Shurong ; Hou, Peichen ; Ma, Xujun ; Zhang, Yuhong ; Wang, Feifei ; Sa, Gang ; Tan, Yeqing ; Lang, Tao ; Li, Jinke ; Shen, Xin ; Chen, Shaoliang</creator><creatorcontrib>Wang, Meijuan ; Wang, Yang ; Sun, Jian ; Ding, Mingquan ; Deng, Shurong ; Hou, Peichen ; Ma, Xujun ; Zhang, Yuhong ; Wang, Feifei ; Sa, Gang ; Tan, Yeqing ; Lang, Tao ; Li, Jinke ; Shen, Xin ; Chen, Shaoliang</creatorcontrib><description>The plant plasma membrane (PM) H+-ATPase plays a crucial role in controlling K+/Na+ homeostasis under salt stress. Our previous microarray analysis indicated that Populus euphratica retained a higher abundance of PM H+-ATPase transcript versus a salt-sensitive poplar. To clarify the roles of the PM H+-ATPase in salt sensing and adaptation, we isolated the PM H+-ATPase gene PeHA1 from P. euphratica and introduced it into Arabidopsis thaliana. Compared to wild-type, PeHA1-transgenic Arabidopsis had a greater germination rate, root length, and biomass under NaCl stress (50–150 mM). Ectopic expression of PeHA1 remarkably enhanced the capacity to control the homeostasis of ions and reactive oxygen species in salinized Arabidopsis. Flux data from salinized roots showed that transgenic plants exhibited a more pronounced Na+/H+ antiport and less reduction of K+ influx versus wild-type. Enhanced PM ATP hydrolytic activity, proton pumping, and Na+/H+ antiport in PeHA1-transgenic plants, were consistent to those observed in vivo, i.e., H+ extrusion, external acidification, and Na+ efflux. Activities of the antioxidant enzymes ascorbate peroxidase and catalase were typically higher in transgenic seedlings irrespective of salt concentration. In transgenic Arabidopsis roots, H2O2 production was higher under control conditions and increased more rapidly than wild-type when plants were subjected to NaCl treatment. Interestingly, transgenic plants were unable to control K+/Na+ homeostasis when salt-induced H2O2 production was inhibited by diphenylene iodonium, an inhibitor of NADPH oxidase. These observations suggest that PeHA1 accelerates salt tolerance partially through rapid H2O2 production upon salt treatment, which triggers adjustments in K+/Na+ homeostasis and antioxidant defense in Arabidopsis.
•PeHA1, the PM H+-ATPase from Populus euphratica, confers salt tolerance in Arabidopsis.•PeHA1 triggers a H2O2 signaling pathway to mediate K+/Na+ homeostasis under salinity.•PeHA1 triggers a H2O2 signaling pathway mediating antioxidant defense in Arabidopsis.</description><identifier>ISSN: 0981-9428</identifier><identifier>EISSN: 1873-2690</identifier><identifier>DOI: 10.1016/j.plaphy.2013.06.020</identifier><identifier>PMID: 23872741</identifier><identifier>CODEN: PPBIEX</identifier><language>eng</language><publisher>Paris: Elsevier Masson SAS</publisher><subject>Antioxidant enzymes ; Arabidopsis - drug effects ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; Hydrogen Peroxide - metabolism ; Ion flux ; K+/Na+ homeostasis ; NaCl ; NMT ; Plant physiology and development ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants, Genetically Modified - drug effects ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; PM H+-ATPase gene ; Populus - genetics ; Populus - metabolism ; Populus euphratica ; Proton-Translocating ATPases - genetics ; Proton-Translocating ATPases - metabolism ; Sodium Chloride - pharmacology</subject><ispartof>Plant physiology and biochemistry, 2013-10, Vol.71, p.37-48</ispartof><rights>2013 Elsevier Masson SAS</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Masson SAS. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-5368e90f40730f54e04bff51d4f6cd71ba3c44f7a5d0dd1483ac91439398a1b3</citedby><cites>FETCH-LOGICAL-c392t-5368e90f40730f54e04bff51d4f6cd71ba3c44f7a5d0dd1483ac91439398a1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0981942813002519$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27799252$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23872741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Meijuan</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Ding, Mingquan</creatorcontrib><creatorcontrib>Deng, Shurong</creatorcontrib><creatorcontrib>Hou, Peichen</creatorcontrib><creatorcontrib>Ma, Xujun</creatorcontrib><creatorcontrib>Zhang, Yuhong</creatorcontrib><creatorcontrib>Wang, Feifei</creatorcontrib><creatorcontrib>Sa, Gang</creatorcontrib><creatorcontrib>Tan, Yeqing</creatorcontrib><creatorcontrib>Lang, Tao</creatorcontrib><creatorcontrib>Li, Jinke</creatorcontrib><creatorcontrib>Shen, Xin</creatorcontrib><creatorcontrib>Chen, Shaoliang</creatorcontrib><title>Overexpression of PeHA1 enhances hydrogen peroxide signaling in salt-stressed Arabidopsis</title><title>Plant physiology and biochemistry</title><addtitle>Plant Physiol Biochem</addtitle><description>The plant plasma membrane (PM) H+-ATPase plays a crucial role in controlling K+/Na+ homeostasis under salt stress. Our previous microarray analysis indicated that Populus euphratica retained a higher abundance of PM H+-ATPase transcript versus a salt-sensitive poplar. To clarify the roles of the PM H+-ATPase in salt sensing and adaptation, we isolated the PM H+-ATPase gene PeHA1 from P. euphratica and introduced it into Arabidopsis thaliana. Compared to wild-type, PeHA1-transgenic Arabidopsis had a greater germination rate, root length, and biomass under NaCl stress (50–150 mM). Ectopic expression of PeHA1 remarkably enhanced the capacity to control the homeostasis of ions and reactive oxygen species in salinized Arabidopsis. Flux data from salinized roots showed that transgenic plants exhibited a more pronounced Na+/H+ antiport and less reduction of K+ influx versus wild-type. Enhanced PM ATP hydrolytic activity, proton pumping, and Na+/H+ antiport in PeHA1-transgenic plants, were consistent to those observed in vivo, i.e., H+ extrusion, external acidification, and Na+ efflux. Activities of the antioxidant enzymes ascorbate peroxidase and catalase were typically higher in transgenic seedlings irrespective of salt concentration. In transgenic Arabidopsis roots, H2O2 production was higher under control conditions and increased more rapidly than wild-type when plants were subjected to NaCl treatment. Interestingly, transgenic plants were unable to control K+/Na+ homeostasis when salt-induced H2O2 production was inhibited by diphenylene iodonium, an inhibitor of NADPH oxidase. These observations suggest that PeHA1 accelerates salt tolerance partially through rapid H2O2 production upon salt treatment, which triggers adjustments in K+/Na+ homeostasis and antioxidant defense in Arabidopsis.
•PeHA1, the PM H+-ATPase from Populus euphratica, confers salt tolerance in Arabidopsis.•PeHA1 triggers a H2O2 signaling pathway to mediate K+/Na+ homeostasis under salinity.•PeHA1 triggers a H2O2 signaling pathway mediating antioxidant defense in Arabidopsis.</description><subject>Antioxidant enzymes</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Ion flux</subject><subject>K+/Na+ homeostasis</subject><subject>NaCl</subject><subject>NMT</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants, Genetically Modified - drug effects</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>PM H+-ATPase gene</subject><subject>Populus - genetics</subject><subject>Populus - metabolism</subject><subject>Populus euphratica</subject><subject>Proton-Translocating ATPases - genetics</subject><subject>Proton-Translocating ATPases - metabolism</subject><subject>Sodium Chloride - pharmacology</subject><issn>0981-9428</issn><issn>1873-2690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E9v0zAYx3ELgVgZvAOEfEHikuB_ieMLUjUNhjRpHHbhZDn249ZVGgc_6bS-e1K1wI2TL9-fbX0Iec9ZzRlvP-_qaXDT9lgLxmXN2poJ9oKseKdlJVrDXpIVMx2vjBLdFXmDuGOMCaXla3IlZKeFVnxFfj48QYHnqQBiyiPNkf6AuzWnMG7d6AHp9hhK3sBIJyj5OQWgmDajG9K4oWmk6Ia5wvm0h0DXxfUp5AkTviWvohsQ3l3Oa_L49fbx5q66f_j2_WZ9X3lpxFw1su3AsKiYliw2CpjqY2x4ULH1QfPeSa9U1K4JLASuOum84UoaaTrHe3lNPp2vnUr-dQCc7T6hh2FwI-QDWq6UlB2XUi2pOqe-ZMQC0U4l7V05Ws7sydTu7NnUnkwta-1iusw-XF449HsIf0d_EJfg4yVw6N0QywKX8F-ntTGiEUv35dzBwvGUoFj0CRbkkAr42Yac_v-T31yJl2I</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Wang, Meijuan</creator><creator>Wang, Yang</creator><creator>Sun, Jian</creator><creator>Ding, Mingquan</creator><creator>Deng, Shurong</creator><creator>Hou, Peichen</creator><creator>Ma, Xujun</creator><creator>Zhang, Yuhong</creator><creator>Wang, Feifei</creator><creator>Sa, Gang</creator><creator>Tan, Yeqing</creator><creator>Lang, Tao</creator><creator>Li, Jinke</creator><creator>Shen, Xin</creator><creator>Chen, Shaoliang</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20131001</creationdate><title>Overexpression of PeHA1 enhances hydrogen peroxide signaling in salt-stressed Arabidopsis</title><author>Wang, Meijuan ; Wang, Yang ; Sun, Jian ; Ding, Mingquan ; Deng, Shurong ; Hou, Peichen ; Ma, Xujun ; Zhang, Yuhong ; Wang, Feifei ; Sa, Gang ; Tan, Yeqing ; Lang, Tao ; Li, Jinke ; Shen, Xin ; Chen, Shaoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-5368e90f40730f54e04bff51d4f6cd71ba3c44f7a5d0dd1483ac91439398a1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Antioxidant enzymes</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Ion flux</topic><topic>K+/Na+ homeostasis</topic><topic>NaCl</topic><topic>NMT</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants, Genetically Modified - drug effects</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>PM H+-ATPase gene</topic><topic>Populus - genetics</topic><topic>Populus - metabolism</topic><topic>Populus euphratica</topic><topic>Proton-Translocating ATPases - genetics</topic><topic>Proton-Translocating ATPases - metabolism</topic><topic>Sodium Chloride - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Meijuan</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Ding, Mingquan</creatorcontrib><creatorcontrib>Deng, Shurong</creatorcontrib><creatorcontrib>Hou, Peichen</creatorcontrib><creatorcontrib>Ma, Xujun</creatorcontrib><creatorcontrib>Zhang, Yuhong</creatorcontrib><creatorcontrib>Wang, Feifei</creatorcontrib><creatorcontrib>Sa, Gang</creatorcontrib><creatorcontrib>Tan, Yeqing</creatorcontrib><creatorcontrib>Lang, Tao</creatorcontrib><creatorcontrib>Li, Jinke</creatorcontrib><creatorcontrib>Shen, Xin</creatorcontrib><creatorcontrib>Chen, Shaoliang</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology and biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Meijuan</au><au>Wang, Yang</au><au>Sun, Jian</au><au>Ding, Mingquan</au><au>Deng, Shurong</au><au>Hou, Peichen</au><au>Ma, Xujun</au><au>Zhang, Yuhong</au><au>Wang, Feifei</au><au>Sa, Gang</au><au>Tan, Yeqing</au><au>Lang, Tao</au><au>Li, Jinke</au><au>Shen, Xin</au><au>Chen, Shaoliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overexpression of PeHA1 enhances hydrogen peroxide signaling in salt-stressed Arabidopsis</atitle><jtitle>Plant physiology and biochemistry</jtitle><addtitle>Plant Physiol Biochem</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>71</volume><spage>37</spage><epage>48</epage><pages>37-48</pages><issn>0981-9428</issn><eissn>1873-2690</eissn><coden>PPBIEX</coden><abstract>The plant plasma membrane (PM) H+-ATPase plays a crucial role in controlling K+/Na+ homeostasis under salt stress. Our previous microarray analysis indicated that Populus euphratica retained a higher abundance of PM H+-ATPase transcript versus a salt-sensitive poplar. To clarify the roles of the PM H+-ATPase in salt sensing and adaptation, we isolated the PM H+-ATPase gene PeHA1 from P. euphratica and introduced it into Arabidopsis thaliana. Compared to wild-type, PeHA1-transgenic Arabidopsis had a greater germination rate, root length, and biomass under NaCl stress (50–150 mM). Ectopic expression of PeHA1 remarkably enhanced the capacity to control the homeostasis of ions and reactive oxygen species in salinized Arabidopsis. Flux data from salinized roots showed that transgenic plants exhibited a more pronounced Na+/H+ antiport and less reduction of K+ influx versus wild-type. Enhanced PM ATP hydrolytic activity, proton pumping, and Na+/H+ antiport in PeHA1-transgenic plants, were consistent to those observed in vivo, i.e., H+ extrusion, external acidification, and Na+ efflux. Activities of the antioxidant enzymes ascorbate peroxidase and catalase were typically higher in transgenic seedlings irrespective of salt concentration. In transgenic Arabidopsis roots, H2O2 production was higher under control conditions and increased more rapidly than wild-type when plants were subjected to NaCl treatment. Interestingly, transgenic plants were unable to control K+/Na+ homeostasis when salt-induced H2O2 production was inhibited by diphenylene iodonium, an inhibitor of NADPH oxidase. These observations suggest that PeHA1 accelerates salt tolerance partially through rapid H2O2 production upon salt treatment, which triggers adjustments in K+/Na+ homeostasis and antioxidant defense in Arabidopsis.
•PeHA1, the PM H+-ATPase from Populus euphratica, confers salt tolerance in Arabidopsis.•PeHA1 triggers a H2O2 signaling pathway to mediate K+/Na+ homeostasis under salinity.•PeHA1 triggers a H2O2 signaling pathway mediating antioxidant defense in Arabidopsis.</abstract><cop>Paris</cop><pub>Elsevier Masson SAS</pub><pmid>23872741</pmid><doi>10.1016/j.plaphy.2013.06.020</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0981-9428 |
ispartof | Plant physiology and biochemistry, 2013-10, Vol.71, p.37-48 |
issn | 0981-9428 1873-2690 |
language | eng |
recordid | cdi_proquest_miscellaneous_1443381334 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Antioxidant enzymes Arabidopsis - drug effects Arabidopsis - genetics Arabidopsis - metabolism Biological and medical sciences Fundamental and applied biological sciences. Psychology Hydrogen Peroxide - metabolism Ion flux K+/Na+ homeostasis NaCl NMT Plant physiology and development Plant Proteins - genetics Plant Proteins - metabolism Plants, Genetically Modified - drug effects Plants, Genetically Modified - genetics Plants, Genetically Modified - metabolism PM H+-ATPase gene Populus - genetics Populus - metabolism Populus euphratica Proton-Translocating ATPases - genetics Proton-Translocating ATPases - metabolism Sodium Chloride - pharmacology |
title | Overexpression of PeHA1 enhances hydrogen peroxide signaling in salt-stressed Arabidopsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overexpression%20of%20PeHA1%20enhances%20hydrogen%20peroxide%20signaling%20in%20salt-stressed%20Arabidopsis&rft.jtitle=Plant%20physiology%20and%20biochemistry&rft.au=Wang,%20Meijuan&rft.date=2013-10-01&rft.volume=71&rft.spage=37&rft.epage=48&rft.pages=37-48&rft.issn=0981-9428&rft.eissn=1873-2690&rft.coden=PPBIEX&rft_id=info:doi/10.1016/j.plaphy.2013.06.020&rft_dat=%3Cproquest_cross%3E1443381334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443381334&rft_id=info:pmid/23872741&rft_els_id=S0981942813002519&rfr_iscdi=true |