Overexpression of PeHA1 enhances hydrogen peroxide signaling in salt-stressed Arabidopsis

The plant plasma membrane (PM) H+-ATPase plays a crucial role in controlling K+/Na+ homeostasis under salt stress. Our previous microarray analysis indicated that Populus euphratica retained a higher abundance of PM H+-ATPase transcript versus a salt-sensitive poplar. To clarify the roles of the PM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry 2013-10, Vol.71, p.37-48
Hauptverfasser: Wang, Meijuan, Wang, Yang, Sun, Jian, Ding, Mingquan, Deng, Shurong, Hou, Peichen, Ma, Xujun, Zhang, Yuhong, Wang, Feifei, Sa, Gang, Tan, Yeqing, Lang, Tao, Li, Jinke, Shen, Xin, Chen, Shaoliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue
container_start_page 37
container_title Plant physiology and biochemistry
container_volume 71
creator Wang, Meijuan
Wang, Yang
Sun, Jian
Ding, Mingquan
Deng, Shurong
Hou, Peichen
Ma, Xujun
Zhang, Yuhong
Wang, Feifei
Sa, Gang
Tan, Yeqing
Lang, Tao
Li, Jinke
Shen, Xin
Chen, Shaoliang
description The plant plasma membrane (PM) H+-ATPase plays a crucial role in controlling K+/Na+ homeostasis under salt stress. Our previous microarray analysis indicated that Populus euphratica retained a higher abundance of PM H+-ATPase transcript versus a salt-sensitive poplar. To clarify the roles of the PM H+-ATPase in salt sensing and adaptation, we isolated the PM H+-ATPase gene PeHA1 from P. euphratica and introduced it into Arabidopsis thaliana. Compared to wild-type, PeHA1-transgenic Arabidopsis had a greater germination rate, root length, and biomass under NaCl stress (50–150 mM). Ectopic expression of PeHA1 remarkably enhanced the capacity to control the homeostasis of ions and reactive oxygen species in salinized Arabidopsis. Flux data from salinized roots showed that transgenic plants exhibited a more pronounced Na+/H+ antiport and less reduction of K+ influx versus wild-type. Enhanced PM ATP hydrolytic activity, proton pumping, and Na+/H+ antiport in PeHA1-transgenic plants, were consistent to those observed in vivo, i.e., H+ extrusion, external acidification, and Na+ efflux. Activities of the antioxidant enzymes ascorbate peroxidase and catalase were typically higher in transgenic seedlings irrespective of salt concentration. In transgenic Arabidopsis roots, H2O2 production was higher under control conditions and increased more rapidly than wild-type when plants were subjected to NaCl treatment. Interestingly, transgenic plants were unable to control K+/Na+ homeostasis when salt-induced H2O2 production was inhibited by diphenylene iodonium, an inhibitor of NADPH oxidase. These observations suggest that PeHA1 accelerates salt tolerance partially through rapid H2O2 production upon salt treatment, which triggers adjustments in K+/Na+ homeostasis and antioxidant defense in Arabidopsis. •PeHA1, the PM H+-ATPase from Populus euphratica, confers salt tolerance in Arabidopsis.•PeHA1 triggers a H2O2 signaling pathway to mediate K+/Na+ homeostasis under salinity.•PeHA1 triggers a H2O2 signaling pathway mediating antioxidant defense in Arabidopsis.
doi_str_mv 10.1016/j.plaphy.2013.06.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1443381334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0981942813002519</els_id><sourcerecordid>1443381334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-5368e90f40730f54e04bff51d4f6cd71ba3c44f7a5d0dd1483ac91439398a1b3</originalsourceid><addsrcrecordid>eNp90E9v0zAYx3ELgVgZvAOEfEHikuB_ieMLUjUNhjRpHHbhZDn249ZVGgc_6bS-e1K1wI2TL9-fbX0Iec9ZzRlvP-_qaXDT9lgLxmXN2poJ9oKseKdlJVrDXpIVMx2vjBLdFXmDuGOMCaXla3IlZKeFVnxFfj48QYHnqQBiyiPNkf6AuzWnMG7d6AHp9hhK3sBIJyj5OQWgmDajG9K4oWmk6Ia5wvm0h0DXxfUp5AkTviWvohsQ3l3Oa_L49fbx5q66f_j2_WZ9X3lpxFw1su3AsKiYliw2CpjqY2x4ULH1QfPeSa9U1K4JLASuOum84UoaaTrHe3lNPp2vnUr-dQCc7T6hh2FwI-QDWq6UlB2XUi2pOqe-ZMQC0U4l7V05Ws7sydTu7NnUnkwta-1iusw-XF449HsIf0d_EJfg4yVw6N0QywKX8F-ntTGiEUv35dzBwvGUoFj0CRbkkAr42Yac_v-T31yJl2I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443381334</pqid></control><display><type>article</type><title>Overexpression of PeHA1 enhances hydrogen peroxide signaling in salt-stressed Arabidopsis</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wang, Meijuan ; Wang, Yang ; Sun, Jian ; Ding, Mingquan ; Deng, Shurong ; Hou, Peichen ; Ma, Xujun ; Zhang, Yuhong ; Wang, Feifei ; Sa, Gang ; Tan, Yeqing ; Lang, Tao ; Li, Jinke ; Shen, Xin ; Chen, Shaoliang</creator><creatorcontrib>Wang, Meijuan ; Wang, Yang ; Sun, Jian ; Ding, Mingquan ; Deng, Shurong ; Hou, Peichen ; Ma, Xujun ; Zhang, Yuhong ; Wang, Feifei ; Sa, Gang ; Tan, Yeqing ; Lang, Tao ; Li, Jinke ; Shen, Xin ; Chen, Shaoliang</creatorcontrib><description>The plant plasma membrane (PM) H+-ATPase plays a crucial role in controlling K+/Na+ homeostasis under salt stress. Our previous microarray analysis indicated that Populus euphratica retained a higher abundance of PM H+-ATPase transcript versus a salt-sensitive poplar. To clarify the roles of the PM H+-ATPase in salt sensing and adaptation, we isolated the PM H+-ATPase gene PeHA1 from P. euphratica and introduced it into Arabidopsis thaliana. Compared to wild-type, PeHA1-transgenic Arabidopsis had a greater germination rate, root length, and biomass under NaCl stress (50–150 mM). Ectopic expression of PeHA1 remarkably enhanced the capacity to control the homeostasis of ions and reactive oxygen species in salinized Arabidopsis. Flux data from salinized roots showed that transgenic plants exhibited a more pronounced Na+/H+ antiport and less reduction of K+ influx versus wild-type. Enhanced PM ATP hydrolytic activity, proton pumping, and Na+/H+ antiport in PeHA1-transgenic plants, were consistent to those observed in vivo, i.e., H+ extrusion, external acidification, and Na+ efflux. Activities of the antioxidant enzymes ascorbate peroxidase and catalase were typically higher in transgenic seedlings irrespective of salt concentration. In transgenic Arabidopsis roots, H2O2 production was higher under control conditions and increased more rapidly than wild-type when plants were subjected to NaCl treatment. Interestingly, transgenic plants were unable to control K+/Na+ homeostasis when salt-induced H2O2 production was inhibited by diphenylene iodonium, an inhibitor of NADPH oxidase. These observations suggest that PeHA1 accelerates salt tolerance partially through rapid H2O2 production upon salt treatment, which triggers adjustments in K+/Na+ homeostasis and antioxidant defense in Arabidopsis. •PeHA1, the PM H+-ATPase from Populus euphratica, confers salt tolerance in Arabidopsis.•PeHA1 triggers a H2O2 signaling pathway to mediate K+/Na+ homeostasis under salinity.•PeHA1 triggers a H2O2 signaling pathway mediating antioxidant defense in Arabidopsis.</description><identifier>ISSN: 0981-9428</identifier><identifier>EISSN: 1873-2690</identifier><identifier>DOI: 10.1016/j.plaphy.2013.06.020</identifier><identifier>PMID: 23872741</identifier><identifier>CODEN: PPBIEX</identifier><language>eng</language><publisher>Paris: Elsevier Masson SAS</publisher><subject>Antioxidant enzymes ; Arabidopsis - drug effects ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; Hydrogen Peroxide - metabolism ; Ion flux ; K+/Na+ homeostasis ; NaCl ; NMT ; Plant physiology and development ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants, Genetically Modified - drug effects ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; PM H+-ATPase gene ; Populus - genetics ; Populus - metabolism ; Populus euphratica ; Proton-Translocating ATPases - genetics ; Proton-Translocating ATPases - metabolism ; Sodium Chloride - pharmacology</subject><ispartof>Plant physiology and biochemistry, 2013-10, Vol.71, p.37-48</ispartof><rights>2013 Elsevier Masson SAS</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Masson SAS. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-5368e90f40730f54e04bff51d4f6cd71ba3c44f7a5d0dd1483ac91439398a1b3</citedby><cites>FETCH-LOGICAL-c392t-5368e90f40730f54e04bff51d4f6cd71ba3c44f7a5d0dd1483ac91439398a1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0981942813002519$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27799252$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23872741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Meijuan</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Ding, Mingquan</creatorcontrib><creatorcontrib>Deng, Shurong</creatorcontrib><creatorcontrib>Hou, Peichen</creatorcontrib><creatorcontrib>Ma, Xujun</creatorcontrib><creatorcontrib>Zhang, Yuhong</creatorcontrib><creatorcontrib>Wang, Feifei</creatorcontrib><creatorcontrib>Sa, Gang</creatorcontrib><creatorcontrib>Tan, Yeqing</creatorcontrib><creatorcontrib>Lang, Tao</creatorcontrib><creatorcontrib>Li, Jinke</creatorcontrib><creatorcontrib>Shen, Xin</creatorcontrib><creatorcontrib>Chen, Shaoliang</creatorcontrib><title>Overexpression of PeHA1 enhances hydrogen peroxide signaling in salt-stressed Arabidopsis</title><title>Plant physiology and biochemistry</title><addtitle>Plant Physiol Biochem</addtitle><description>The plant plasma membrane (PM) H+-ATPase plays a crucial role in controlling K+/Na+ homeostasis under salt stress. Our previous microarray analysis indicated that Populus euphratica retained a higher abundance of PM H+-ATPase transcript versus a salt-sensitive poplar. To clarify the roles of the PM H+-ATPase in salt sensing and adaptation, we isolated the PM H+-ATPase gene PeHA1 from P. euphratica and introduced it into Arabidopsis thaliana. Compared to wild-type, PeHA1-transgenic Arabidopsis had a greater germination rate, root length, and biomass under NaCl stress (50–150 mM). Ectopic expression of PeHA1 remarkably enhanced the capacity to control the homeostasis of ions and reactive oxygen species in salinized Arabidopsis. Flux data from salinized roots showed that transgenic plants exhibited a more pronounced Na+/H+ antiport and less reduction of K+ influx versus wild-type. Enhanced PM ATP hydrolytic activity, proton pumping, and Na+/H+ antiport in PeHA1-transgenic plants, were consistent to those observed in vivo, i.e., H+ extrusion, external acidification, and Na+ efflux. Activities of the antioxidant enzymes ascorbate peroxidase and catalase were typically higher in transgenic seedlings irrespective of salt concentration. In transgenic Arabidopsis roots, H2O2 production was higher under control conditions and increased more rapidly than wild-type when plants were subjected to NaCl treatment. Interestingly, transgenic plants were unable to control K+/Na+ homeostasis when salt-induced H2O2 production was inhibited by diphenylene iodonium, an inhibitor of NADPH oxidase. These observations suggest that PeHA1 accelerates salt tolerance partially through rapid H2O2 production upon salt treatment, which triggers adjustments in K+/Na+ homeostasis and antioxidant defense in Arabidopsis. •PeHA1, the PM H+-ATPase from Populus euphratica, confers salt tolerance in Arabidopsis.•PeHA1 triggers a H2O2 signaling pathway to mediate K+/Na+ homeostasis under salinity.•PeHA1 triggers a H2O2 signaling pathway mediating antioxidant defense in Arabidopsis.</description><subject>Antioxidant enzymes</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Ion flux</subject><subject>K+/Na+ homeostasis</subject><subject>NaCl</subject><subject>NMT</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants, Genetically Modified - drug effects</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>PM H+-ATPase gene</subject><subject>Populus - genetics</subject><subject>Populus - metabolism</subject><subject>Populus euphratica</subject><subject>Proton-Translocating ATPases - genetics</subject><subject>Proton-Translocating ATPases - metabolism</subject><subject>Sodium Chloride - pharmacology</subject><issn>0981-9428</issn><issn>1873-2690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90E9v0zAYx3ELgVgZvAOEfEHikuB_ieMLUjUNhjRpHHbhZDn249ZVGgc_6bS-e1K1wI2TL9-fbX0Iec9ZzRlvP-_qaXDT9lgLxmXN2poJ9oKseKdlJVrDXpIVMx2vjBLdFXmDuGOMCaXla3IlZKeFVnxFfj48QYHnqQBiyiPNkf6AuzWnMG7d6AHp9hhK3sBIJyj5OQWgmDajG9K4oWmk6Ia5wvm0h0DXxfUp5AkTviWvohsQ3l3Oa_L49fbx5q66f_j2_WZ9X3lpxFw1su3AsKiYliw2CpjqY2x4ULH1QfPeSa9U1K4JLASuOum84UoaaTrHe3lNPp2vnUr-dQCc7T6hh2FwI-QDWq6UlB2XUi2pOqe-ZMQC0U4l7V05Ws7sydTu7NnUnkwta-1iusw-XF449HsIf0d_EJfg4yVw6N0QywKX8F-ntTGiEUv35dzBwvGUoFj0CRbkkAr42Yac_v-T31yJl2I</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Wang, Meijuan</creator><creator>Wang, Yang</creator><creator>Sun, Jian</creator><creator>Ding, Mingquan</creator><creator>Deng, Shurong</creator><creator>Hou, Peichen</creator><creator>Ma, Xujun</creator><creator>Zhang, Yuhong</creator><creator>Wang, Feifei</creator><creator>Sa, Gang</creator><creator>Tan, Yeqing</creator><creator>Lang, Tao</creator><creator>Li, Jinke</creator><creator>Shen, Xin</creator><creator>Chen, Shaoliang</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20131001</creationdate><title>Overexpression of PeHA1 enhances hydrogen peroxide signaling in salt-stressed Arabidopsis</title><author>Wang, Meijuan ; Wang, Yang ; Sun, Jian ; Ding, Mingquan ; Deng, Shurong ; Hou, Peichen ; Ma, Xujun ; Zhang, Yuhong ; Wang, Feifei ; Sa, Gang ; Tan, Yeqing ; Lang, Tao ; Li, Jinke ; Shen, Xin ; Chen, Shaoliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-5368e90f40730f54e04bff51d4f6cd71ba3c44f7a5d0dd1483ac91439398a1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Antioxidant enzymes</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Ion flux</topic><topic>K+/Na+ homeostasis</topic><topic>NaCl</topic><topic>NMT</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants, Genetically Modified - drug effects</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>PM H+-ATPase gene</topic><topic>Populus - genetics</topic><topic>Populus - metabolism</topic><topic>Populus euphratica</topic><topic>Proton-Translocating ATPases - genetics</topic><topic>Proton-Translocating ATPases - metabolism</topic><topic>Sodium Chloride - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Meijuan</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><creatorcontrib>Ding, Mingquan</creatorcontrib><creatorcontrib>Deng, Shurong</creatorcontrib><creatorcontrib>Hou, Peichen</creatorcontrib><creatorcontrib>Ma, Xujun</creatorcontrib><creatorcontrib>Zhang, Yuhong</creatorcontrib><creatorcontrib>Wang, Feifei</creatorcontrib><creatorcontrib>Sa, Gang</creatorcontrib><creatorcontrib>Tan, Yeqing</creatorcontrib><creatorcontrib>Lang, Tao</creatorcontrib><creatorcontrib>Li, Jinke</creatorcontrib><creatorcontrib>Shen, Xin</creatorcontrib><creatorcontrib>Chen, Shaoliang</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology and biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Meijuan</au><au>Wang, Yang</au><au>Sun, Jian</au><au>Ding, Mingquan</au><au>Deng, Shurong</au><au>Hou, Peichen</au><au>Ma, Xujun</au><au>Zhang, Yuhong</au><au>Wang, Feifei</au><au>Sa, Gang</au><au>Tan, Yeqing</au><au>Lang, Tao</au><au>Li, Jinke</au><au>Shen, Xin</au><au>Chen, Shaoliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overexpression of PeHA1 enhances hydrogen peroxide signaling in salt-stressed Arabidopsis</atitle><jtitle>Plant physiology and biochemistry</jtitle><addtitle>Plant Physiol Biochem</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>71</volume><spage>37</spage><epage>48</epage><pages>37-48</pages><issn>0981-9428</issn><eissn>1873-2690</eissn><coden>PPBIEX</coden><abstract>The plant plasma membrane (PM) H+-ATPase plays a crucial role in controlling K+/Na+ homeostasis under salt stress. Our previous microarray analysis indicated that Populus euphratica retained a higher abundance of PM H+-ATPase transcript versus a salt-sensitive poplar. To clarify the roles of the PM H+-ATPase in salt sensing and adaptation, we isolated the PM H+-ATPase gene PeHA1 from P. euphratica and introduced it into Arabidopsis thaliana. Compared to wild-type, PeHA1-transgenic Arabidopsis had a greater germination rate, root length, and biomass under NaCl stress (50–150 mM). Ectopic expression of PeHA1 remarkably enhanced the capacity to control the homeostasis of ions and reactive oxygen species in salinized Arabidopsis. Flux data from salinized roots showed that transgenic plants exhibited a more pronounced Na+/H+ antiport and less reduction of K+ influx versus wild-type. Enhanced PM ATP hydrolytic activity, proton pumping, and Na+/H+ antiport in PeHA1-transgenic plants, were consistent to those observed in vivo, i.e., H+ extrusion, external acidification, and Na+ efflux. Activities of the antioxidant enzymes ascorbate peroxidase and catalase were typically higher in transgenic seedlings irrespective of salt concentration. In transgenic Arabidopsis roots, H2O2 production was higher under control conditions and increased more rapidly than wild-type when plants were subjected to NaCl treatment. Interestingly, transgenic plants were unable to control K+/Na+ homeostasis when salt-induced H2O2 production was inhibited by diphenylene iodonium, an inhibitor of NADPH oxidase. These observations suggest that PeHA1 accelerates salt tolerance partially through rapid H2O2 production upon salt treatment, which triggers adjustments in K+/Na+ homeostasis and antioxidant defense in Arabidopsis. •PeHA1, the PM H+-ATPase from Populus euphratica, confers salt tolerance in Arabidopsis.•PeHA1 triggers a H2O2 signaling pathway to mediate K+/Na+ homeostasis under salinity.•PeHA1 triggers a H2O2 signaling pathway mediating antioxidant defense in Arabidopsis.</abstract><cop>Paris</cop><pub>Elsevier Masson SAS</pub><pmid>23872741</pmid><doi>10.1016/j.plaphy.2013.06.020</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0981-9428
ispartof Plant physiology and biochemistry, 2013-10, Vol.71, p.37-48
issn 0981-9428
1873-2690
language eng
recordid cdi_proquest_miscellaneous_1443381334
source MEDLINE; Elsevier ScienceDirect Journals
subjects Antioxidant enzymes
Arabidopsis - drug effects
Arabidopsis - genetics
Arabidopsis - metabolism
Biological and medical sciences
Fundamental and applied biological sciences. Psychology
Hydrogen Peroxide - metabolism
Ion flux
K+/Na+ homeostasis
NaCl
NMT
Plant physiology and development
Plant Proteins - genetics
Plant Proteins - metabolism
Plants, Genetically Modified - drug effects
Plants, Genetically Modified - genetics
Plants, Genetically Modified - metabolism
PM H+-ATPase gene
Populus - genetics
Populus - metabolism
Populus euphratica
Proton-Translocating ATPases - genetics
Proton-Translocating ATPases - metabolism
Sodium Chloride - pharmacology
title Overexpression of PeHA1 enhances hydrogen peroxide signaling in salt-stressed Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overexpression%20of%20PeHA1%20enhances%20hydrogen%20peroxide%20signaling%20in%20salt-stressed%20Arabidopsis&rft.jtitle=Plant%20physiology%20and%20biochemistry&rft.au=Wang,%20Meijuan&rft.date=2013-10-01&rft.volume=71&rft.spage=37&rft.epage=48&rft.pages=37-48&rft.issn=0981-9428&rft.eissn=1873-2690&rft.coden=PPBIEX&rft_id=info:doi/10.1016/j.plaphy.2013.06.020&rft_dat=%3Cproquest_cross%3E1443381334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443381334&rft_id=info:pmid/23872741&rft_els_id=S0981942813002519&rfr_iscdi=true