Estimating tree growth from complex forest monitoring data

Understanding tree growth as a function of tree size is important for a multitude of ecological and management applications. Determining what limits growth is of central interest, and forest inventory permanent plots are an abundant source of long-term information but are highly complex. Observation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological applications 2013-09, Vol.23 (6), p.1288-1296
Hauptverfasser: Eitzel, Melissa, Battles, John, York, Robert, Knape, Jonas, de Valpine, Perry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1296
container_issue 6
container_start_page 1288
container_title Ecological applications
container_volume 23
creator Eitzel, Melissa
Battles, John
York, Robert
Knape, Jonas
de Valpine, Perry
description Understanding tree growth as a function of tree size is important for a multitude of ecological and management applications. Determining what limits growth is of central interest, and forest inventory permanent plots are an abundant source of long-term information but are highly complex. Observation error and multiple sources of shared variation (spatial plot effects, temporal repeated measures, and a mosaic of sampling intervals) make these data challenging to use for growth estimation. We account for these complexities and incorporate potential limiting factors (tree size, competition, and resource supply) into a hierarchical state-space model. We estimate the diameter growth of white fir ( Abies concolor ) in the Sierra Nevada of California from forest inventory data, showing that estimating such a model is feasible in a Bayesian framework using readily available modeling tools. In this forest, white fir growth depends strongly on tree size, total plot basal area, and unexplained variation between individual trees. Plot-level resource supply variables (representing light, water, and nutrient availability) do not have a strong impact on inventory-size trees. This approach can be applied to other networks of permanent forest plots, leading to greater ecological insights on tree growth.
doi_str_mv 10.1890/12-0504.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1443379995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23596824</jstor_id><sourcerecordid>23596824</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4728-43183ded3ea84fe98b24a414c81ad58aecdab59985278f9601f4429e4e9fa98c3</originalsourceid><addsrcrecordid>eNqNkU9r3DAQxUVoyb_mkA_QYiiF9uBUGkm21FsImyYQSA7tWWjtUeJgW66kJdlvXy3eNoG0EF0kmN-8N_NEyDGjJ0xp-pVBSSUVJ2yH7DPNdSmlgjf5TSUraV2xPXIQ4z3NBwB2yR4IJmpBYZ98W8TUDTZ1422RAmJxG_xDuitc8EPR-GHq8bFwPmBMxeDHLvmwQVub7Dvy1tk-4tH2PiQ_zxc_zi7Kq-vvl2enV6UVNahScKZ4iy1Hq4RDrZYgbPZvFLOtVBab1i6l1kpCrZyuKHNCgEaB2lmtGn5IPs-6U_C_VnkQM3Sxwb63I_pVNEwIoaSqKvkalPNaa71Bv8xoE3yMAZ2ZQg4irA2jZpOqYWA2qRqW2Q9b2dVywPYv-SfGDHzaAjY2tnfBjk0Xn7i6BlA1zZycuYeux_X_Hc3i9AYo48ArBkrlvvdz333MH_Cky6WuFIhc_zjXbVpPfjQY7TOxqXUmPaZ_Uy-W_Q0M9ayf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443379995</pqid></control><display><type>article</type><title>Estimating tree growth from complex forest monitoring data</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Eitzel, Melissa ; Battles, John ; York, Robert ; Knape, Jonas ; de Valpine, Perry</creator><contributor>Finley, AO</contributor><creatorcontrib>Eitzel, Melissa ; Battles, John ; York, Robert ; Knape, Jonas ; de Valpine, Perry ; Finley, AO</creatorcontrib><description>Understanding tree growth as a function of tree size is important for a multitude of ecological and management applications. Determining what limits growth is of central interest, and forest inventory permanent plots are an abundant source of long-term information but are highly complex. Observation error and multiple sources of shared variation (spatial plot effects, temporal repeated measures, and a mosaic of sampling intervals) make these data challenging to use for growth estimation. We account for these complexities and incorporate potential limiting factors (tree size, competition, and resource supply) into a hierarchical state-space model. We estimate the diameter growth of white fir ( Abies concolor ) in the Sierra Nevada of California from forest inventory data, showing that estimating such a model is feasible in a Bayesian framework using readily available modeling tools. In this forest, white fir growth depends strongly on tree size, total plot basal area, and unexplained variation between individual trees. Plot-level resource supply variables (representing light, water, and nutrient availability) do not have a strong impact on inventory-size trees. This approach can be applied to other networks of permanent forest plots, leading to greater ecological insights on tree growth.</description><identifier>ISSN: 1051-0761</identifier><identifier>EISSN: 1939-5582</identifier><identifier>DOI: 10.1890/12-0504.1</identifier><identifier>PMID: 24147402</identifier><identifier>CODEN: ECAPE7</identifier><language>eng</language><publisher>Washington, DC: Ecological Society of America</publisher><subject>Abies concolor ; Biological and medical sciences ; California ; competition intensity ; Coniferous forests ; Ecological modeling ; Environmental Monitoring - methods ; Forest ecology ; Forest growth ; Forest management ; Forestry ; Fundamental and applied biological sciences. Psychology ; General forest ecology ; Generalities. Production, biomass. Quality of wood and forest products. General forest ecology ; hierarchical model ; individual variation ; Markov chain Monte Carlo ; Musical intervals ; OpenBUGS ; permanent plots ; Plant ecology ; Standard deviation ; state-space model ; Tree growth ; Trees ; Trees - growth &amp; development</subject><ispartof>Ecological applications, 2013-09, Vol.23 (6), p.1288-1296</ispartof><rights>Copyright © 2013 Ecological Society of America</rights><rights>2013 by the Ecological Society of America</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4728-43183ded3ea84fe98b24a414c81ad58aecdab59985278f9601f4429e4e9fa98c3</citedby><cites>FETCH-LOGICAL-a4728-43183ded3ea84fe98b24a414c81ad58aecdab59985278f9601f4429e4e9fa98c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23596824$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23596824$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27722870$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24147402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Finley, AO</contributor><creatorcontrib>Eitzel, Melissa</creatorcontrib><creatorcontrib>Battles, John</creatorcontrib><creatorcontrib>York, Robert</creatorcontrib><creatorcontrib>Knape, Jonas</creatorcontrib><creatorcontrib>de Valpine, Perry</creatorcontrib><title>Estimating tree growth from complex forest monitoring data</title><title>Ecological applications</title><addtitle>Ecol Appl</addtitle><description>Understanding tree growth as a function of tree size is important for a multitude of ecological and management applications. Determining what limits growth is of central interest, and forest inventory permanent plots are an abundant source of long-term information but are highly complex. Observation error and multiple sources of shared variation (spatial plot effects, temporal repeated measures, and a mosaic of sampling intervals) make these data challenging to use for growth estimation. We account for these complexities and incorporate potential limiting factors (tree size, competition, and resource supply) into a hierarchical state-space model. We estimate the diameter growth of white fir ( Abies concolor ) in the Sierra Nevada of California from forest inventory data, showing that estimating such a model is feasible in a Bayesian framework using readily available modeling tools. In this forest, white fir growth depends strongly on tree size, total plot basal area, and unexplained variation between individual trees. Plot-level resource supply variables (representing light, water, and nutrient availability) do not have a strong impact on inventory-size trees. This approach can be applied to other networks of permanent forest plots, leading to greater ecological insights on tree growth.</description><subject>Abies concolor</subject><subject>Biological and medical sciences</subject><subject>California</subject><subject>competition intensity</subject><subject>Coniferous forests</subject><subject>Ecological modeling</subject><subject>Environmental Monitoring - methods</subject><subject>Forest ecology</subject><subject>Forest growth</subject><subject>Forest management</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General forest ecology</subject><subject>Generalities. Production, biomass. Quality of wood and forest products. General forest ecology</subject><subject>hierarchical model</subject><subject>individual variation</subject><subject>Markov chain Monte Carlo</subject><subject>Musical intervals</subject><subject>OpenBUGS</subject><subject>permanent plots</subject><subject>Plant ecology</subject><subject>Standard deviation</subject><subject>state-space model</subject><subject>Tree growth</subject><subject>Trees</subject><subject>Trees - growth &amp; development</subject><issn>1051-0761</issn><issn>1939-5582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9r3DAQxUVoyb_mkA_QYiiF9uBUGkm21FsImyYQSA7tWWjtUeJgW66kJdlvXy3eNoG0EF0kmN-8N_NEyDGjJ0xp-pVBSSUVJ2yH7DPNdSmlgjf5TSUraV2xPXIQ4z3NBwB2yR4IJmpBYZ98W8TUDTZ1422RAmJxG_xDuitc8EPR-GHq8bFwPmBMxeDHLvmwQVub7Dvy1tk-4tH2PiQ_zxc_zi7Kq-vvl2enV6UVNahScKZ4iy1Hq4RDrZYgbPZvFLOtVBab1i6l1kpCrZyuKHNCgEaB2lmtGn5IPs-6U_C_VnkQM3Sxwb63I_pVNEwIoaSqKvkalPNaa71Bv8xoE3yMAZ2ZQg4irA2jZpOqYWA2qRqW2Q9b2dVywPYv-SfGDHzaAjY2tnfBjk0Xn7i6BlA1zZycuYeux_X_Hc3i9AYo48ArBkrlvvdz333MH_Cky6WuFIhc_zjXbVpPfjQY7TOxqXUmPaZ_Uy-W_Q0M9ayf</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Eitzel, Melissa</creator><creator>Battles, John</creator><creator>York, Robert</creator><creator>Knape, Jonas</creator><creator>de Valpine, Perry</creator><general>Ecological Society of America</general><general>ECOLOGICAL SOCIETY OF AMERICA</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>201309</creationdate><title>Estimating tree growth from complex forest monitoring data</title><author>Eitzel, Melissa ; Battles, John ; York, Robert ; Knape, Jonas ; de Valpine, Perry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4728-43183ded3ea84fe98b24a414c81ad58aecdab59985278f9601f4429e4e9fa98c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Abies concolor</topic><topic>Biological and medical sciences</topic><topic>California</topic><topic>competition intensity</topic><topic>Coniferous forests</topic><topic>Ecological modeling</topic><topic>Environmental Monitoring - methods</topic><topic>Forest ecology</topic><topic>Forest growth</topic><topic>Forest management</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General forest ecology</topic><topic>Generalities. Production, biomass. Quality of wood and forest products. General forest ecology</topic><topic>hierarchical model</topic><topic>individual variation</topic><topic>Markov chain Monte Carlo</topic><topic>Musical intervals</topic><topic>OpenBUGS</topic><topic>permanent plots</topic><topic>Plant ecology</topic><topic>Standard deviation</topic><topic>state-space model</topic><topic>Tree growth</topic><topic>Trees</topic><topic>Trees - growth &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eitzel, Melissa</creatorcontrib><creatorcontrib>Battles, John</creatorcontrib><creatorcontrib>York, Robert</creatorcontrib><creatorcontrib>Knape, Jonas</creatorcontrib><creatorcontrib>de Valpine, Perry</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Ecological applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eitzel, Melissa</au><au>Battles, John</au><au>York, Robert</au><au>Knape, Jonas</au><au>de Valpine, Perry</au><au>Finley, AO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating tree growth from complex forest monitoring data</atitle><jtitle>Ecological applications</jtitle><addtitle>Ecol Appl</addtitle><date>2013-09</date><risdate>2013</risdate><volume>23</volume><issue>6</issue><spage>1288</spage><epage>1296</epage><pages>1288-1296</pages><issn>1051-0761</issn><eissn>1939-5582</eissn><coden>ECAPE7</coden><abstract>Understanding tree growth as a function of tree size is important for a multitude of ecological and management applications. Determining what limits growth is of central interest, and forest inventory permanent plots are an abundant source of long-term information but are highly complex. Observation error and multiple sources of shared variation (spatial plot effects, temporal repeated measures, and a mosaic of sampling intervals) make these data challenging to use for growth estimation. We account for these complexities and incorporate potential limiting factors (tree size, competition, and resource supply) into a hierarchical state-space model. We estimate the diameter growth of white fir ( Abies concolor ) in the Sierra Nevada of California from forest inventory data, showing that estimating such a model is feasible in a Bayesian framework using readily available modeling tools. In this forest, white fir growth depends strongly on tree size, total plot basal area, and unexplained variation between individual trees. Plot-level resource supply variables (representing light, water, and nutrient availability) do not have a strong impact on inventory-size trees. This approach can be applied to other networks of permanent forest plots, leading to greater ecological insights on tree growth.</abstract><cop>Washington, DC</cop><pub>Ecological Society of America</pub><pmid>24147402</pmid><doi>10.1890/12-0504.1</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1051-0761
ispartof Ecological applications, 2013-09, Vol.23 (6), p.1288-1296
issn 1051-0761
1939-5582
language eng
recordid cdi_proquest_miscellaneous_1443379995
source Jstor Complete Legacy; MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Abies concolor
Biological and medical sciences
California
competition intensity
Coniferous forests
Ecological modeling
Environmental Monitoring - methods
Forest ecology
Forest growth
Forest management
Forestry
Fundamental and applied biological sciences. Psychology
General forest ecology
Generalities. Production, biomass. Quality of wood and forest products. General forest ecology
hierarchical model
individual variation
Markov chain Monte Carlo
Musical intervals
OpenBUGS
permanent plots
Plant ecology
Standard deviation
state-space model
Tree growth
Trees
Trees - growth & development
title Estimating tree growth from complex forest monitoring data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T07%3A27%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20tree%20growth%20from%20complex%20forest%20monitoring%20data&rft.jtitle=Ecological%20applications&rft.au=Eitzel,%20Melissa&rft.date=2013-09&rft.volume=23&rft.issue=6&rft.spage=1288&rft.epage=1296&rft.pages=1288-1296&rft.issn=1051-0761&rft.eissn=1939-5582&rft.coden=ECAPE7&rft_id=info:doi/10.1890/12-0504.1&rft_dat=%3Cjstor_proqu%3E23596824%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443379995&rft_id=info:pmid/24147402&rft_jstor_id=23596824&rfr_iscdi=true