Estimating tree growth from complex forest monitoring data
Understanding tree growth as a function of tree size is important for a multitude of ecological and management applications. Determining what limits growth is of central interest, and forest inventory permanent plots are an abundant source of long-term information but are highly complex. Observation...
Gespeichert in:
Veröffentlicht in: | Ecological applications 2013-09, Vol.23 (6), p.1288-1296 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1296 |
---|---|
container_issue | 6 |
container_start_page | 1288 |
container_title | Ecological applications |
container_volume | 23 |
creator | Eitzel, Melissa Battles, John York, Robert Knape, Jonas de Valpine, Perry |
description | Understanding tree growth as a function of tree size is important for a multitude of ecological and management applications. Determining what limits growth is of central interest, and forest inventory permanent plots are an abundant source of long-term information but are highly complex. Observation error and multiple sources of shared variation (spatial plot effects, temporal repeated measures, and a mosaic of sampling intervals) make these data challenging to use for growth estimation. We account for these complexities and incorporate potential limiting factors (tree size, competition, and resource supply) into a hierarchical state-space model. We estimate the diameter growth of white fir (
Abies concolor
) in the Sierra Nevada of California from forest inventory data, showing that estimating such a model is feasible in a Bayesian framework using readily available modeling tools. In this forest, white fir growth depends strongly on tree size, total plot basal area, and unexplained variation between individual trees. Plot-level resource supply variables (representing light, water, and nutrient availability) do not have a strong impact on inventory-size trees. This approach can be applied to other networks of permanent forest plots, leading to greater ecological insights on tree growth. |
doi_str_mv | 10.1890/12-0504.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1443379995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23596824</jstor_id><sourcerecordid>23596824</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4728-43183ded3ea84fe98b24a414c81ad58aecdab59985278f9601f4429e4e9fa98c3</originalsourceid><addsrcrecordid>eNqNkU9r3DAQxUVoyb_mkA_QYiiF9uBUGkm21FsImyYQSA7tWWjtUeJgW66kJdlvXy3eNoG0EF0kmN-8N_NEyDGjJ0xp-pVBSSUVJ2yH7DPNdSmlgjf5TSUraV2xPXIQ4z3NBwB2yR4IJmpBYZ98W8TUDTZ1422RAmJxG_xDuitc8EPR-GHq8bFwPmBMxeDHLvmwQVub7Dvy1tk-4tH2PiQ_zxc_zi7Kq-vvl2enV6UVNahScKZ4iy1Hq4RDrZYgbPZvFLOtVBab1i6l1kpCrZyuKHNCgEaB2lmtGn5IPs-6U_C_VnkQM3Sxwb63I_pVNEwIoaSqKvkalPNaa71Bv8xoE3yMAZ2ZQg4irA2jZpOqYWA2qRqW2Q9b2dVywPYv-SfGDHzaAjY2tnfBjk0Xn7i6BlA1zZycuYeux_X_Hc3i9AYo48ArBkrlvvdz333MH_Cky6WuFIhc_zjXbVpPfjQY7TOxqXUmPaZ_Uy-W_Q0M9ayf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443379995</pqid></control><display><type>article</type><title>Estimating tree growth from complex forest monitoring data</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Eitzel, Melissa ; Battles, John ; York, Robert ; Knape, Jonas ; de Valpine, Perry</creator><contributor>Finley, AO</contributor><creatorcontrib>Eitzel, Melissa ; Battles, John ; York, Robert ; Knape, Jonas ; de Valpine, Perry ; Finley, AO</creatorcontrib><description>Understanding tree growth as a function of tree size is important for a multitude of ecological and management applications. Determining what limits growth is of central interest, and forest inventory permanent plots are an abundant source of long-term information but are highly complex. Observation error and multiple sources of shared variation (spatial plot effects, temporal repeated measures, and a mosaic of sampling intervals) make these data challenging to use for growth estimation. We account for these complexities and incorporate potential limiting factors (tree size, competition, and resource supply) into a hierarchical state-space model. We estimate the diameter growth of white fir (
Abies concolor
) in the Sierra Nevada of California from forest inventory data, showing that estimating such a model is feasible in a Bayesian framework using readily available modeling tools. In this forest, white fir growth depends strongly on tree size, total plot basal area, and unexplained variation between individual trees. Plot-level resource supply variables (representing light, water, and nutrient availability) do not have a strong impact on inventory-size trees. This approach can be applied to other networks of permanent forest plots, leading to greater ecological insights on tree growth.</description><identifier>ISSN: 1051-0761</identifier><identifier>EISSN: 1939-5582</identifier><identifier>DOI: 10.1890/12-0504.1</identifier><identifier>PMID: 24147402</identifier><identifier>CODEN: ECAPE7</identifier><language>eng</language><publisher>Washington, DC: Ecological Society of America</publisher><subject>Abies concolor ; Biological and medical sciences ; California ; competition intensity ; Coniferous forests ; Ecological modeling ; Environmental Monitoring - methods ; Forest ecology ; Forest growth ; Forest management ; Forestry ; Fundamental and applied biological sciences. Psychology ; General forest ecology ; Generalities. Production, biomass. Quality of wood and forest products. General forest ecology ; hierarchical model ; individual variation ; Markov chain Monte Carlo ; Musical intervals ; OpenBUGS ; permanent plots ; Plant ecology ; Standard deviation ; state-space model ; Tree growth ; Trees ; Trees - growth & development</subject><ispartof>Ecological applications, 2013-09, Vol.23 (6), p.1288-1296</ispartof><rights>Copyright © 2013 Ecological Society of America</rights><rights>2013 by the Ecological Society of America</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4728-43183ded3ea84fe98b24a414c81ad58aecdab59985278f9601f4429e4e9fa98c3</citedby><cites>FETCH-LOGICAL-a4728-43183ded3ea84fe98b24a414c81ad58aecdab59985278f9601f4429e4e9fa98c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23596824$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23596824$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27722870$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24147402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Finley, AO</contributor><creatorcontrib>Eitzel, Melissa</creatorcontrib><creatorcontrib>Battles, John</creatorcontrib><creatorcontrib>York, Robert</creatorcontrib><creatorcontrib>Knape, Jonas</creatorcontrib><creatorcontrib>de Valpine, Perry</creatorcontrib><title>Estimating tree growth from complex forest monitoring data</title><title>Ecological applications</title><addtitle>Ecol Appl</addtitle><description>Understanding tree growth as a function of tree size is important for a multitude of ecological and management applications. Determining what limits growth is of central interest, and forest inventory permanent plots are an abundant source of long-term information but are highly complex. Observation error and multiple sources of shared variation (spatial plot effects, temporal repeated measures, and a mosaic of sampling intervals) make these data challenging to use for growth estimation. We account for these complexities and incorporate potential limiting factors (tree size, competition, and resource supply) into a hierarchical state-space model. We estimate the diameter growth of white fir (
Abies concolor
) in the Sierra Nevada of California from forest inventory data, showing that estimating such a model is feasible in a Bayesian framework using readily available modeling tools. In this forest, white fir growth depends strongly on tree size, total plot basal area, and unexplained variation between individual trees. Plot-level resource supply variables (representing light, water, and nutrient availability) do not have a strong impact on inventory-size trees. This approach can be applied to other networks of permanent forest plots, leading to greater ecological insights on tree growth.</description><subject>Abies concolor</subject><subject>Biological and medical sciences</subject><subject>California</subject><subject>competition intensity</subject><subject>Coniferous forests</subject><subject>Ecological modeling</subject><subject>Environmental Monitoring - methods</subject><subject>Forest ecology</subject><subject>Forest growth</subject><subject>Forest management</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General forest ecology</subject><subject>Generalities. Production, biomass. Quality of wood and forest products. General forest ecology</subject><subject>hierarchical model</subject><subject>individual variation</subject><subject>Markov chain Monte Carlo</subject><subject>Musical intervals</subject><subject>OpenBUGS</subject><subject>permanent plots</subject><subject>Plant ecology</subject><subject>Standard deviation</subject><subject>state-space model</subject><subject>Tree growth</subject><subject>Trees</subject><subject>Trees - growth & development</subject><issn>1051-0761</issn><issn>1939-5582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU9r3DAQxUVoyb_mkA_QYiiF9uBUGkm21FsImyYQSA7tWWjtUeJgW66kJdlvXy3eNoG0EF0kmN-8N_NEyDGjJ0xp-pVBSSUVJ2yH7DPNdSmlgjf5TSUraV2xPXIQ4z3NBwB2yR4IJmpBYZ98W8TUDTZ1422RAmJxG_xDuitc8EPR-GHq8bFwPmBMxeDHLvmwQVub7Dvy1tk-4tH2PiQ_zxc_zi7Kq-vvl2enV6UVNahScKZ4iy1Hq4RDrZYgbPZvFLOtVBab1i6l1kpCrZyuKHNCgEaB2lmtGn5IPs-6U_C_VnkQM3Sxwb63I_pVNEwIoaSqKvkalPNaa71Bv8xoE3yMAZ2ZQg4irA2jZpOqYWA2qRqW2Q9b2dVywPYv-SfGDHzaAjY2tnfBjk0Xn7i6BlA1zZycuYeux_X_Hc3i9AYo48ArBkrlvvdz333MH_Cky6WuFIhc_zjXbVpPfjQY7TOxqXUmPaZ_Uy-W_Q0M9ayf</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>Eitzel, Melissa</creator><creator>Battles, John</creator><creator>York, Robert</creator><creator>Knape, Jonas</creator><creator>de Valpine, Perry</creator><general>Ecological Society of America</general><general>ECOLOGICAL SOCIETY OF AMERICA</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>201309</creationdate><title>Estimating tree growth from complex forest monitoring data</title><author>Eitzel, Melissa ; Battles, John ; York, Robert ; Knape, Jonas ; de Valpine, Perry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4728-43183ded3ea84fe98b24a414c81ad58aecdab59985278f9601f4429e4e9fa98c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Abies concolor</topic><topic>Biological and medical sciences</topic><topic>California</topic><topic>competition intensity</topic><topic>Coniferous forests</topic><topic>Ecological modeling</topic><topic>Environmental Monitoring - methods</topic><topic>Forest ecology</topic><topic>Forest growth</topic><topic>Forest management</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General forest ecology</topic><topic>Generalities. Production, biomass. Quality of wood and forest products. General forest ecology</topic><topic>hierarchical model</topic><topic>individual variation</topic><topic>Markov chain Monte Carlo</topic><topic>Musical intervals</topic><topic>OpenBUGS</topic><topic>permanent plots</topic><topic>Plant ecology</topic><topic>Standard deviation</topic><topic>state-space model</topic><topic>Tree growth</topic><topic>Trees</topic><topic>Trees - growth & development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eitzel, Melissa</creatorcontrib><creatorcontrib>Battles, John</creatorcontrib><creatorcontrib>York, Robert</creatorcontrib><creatorcontrib>Knape, Jonas</creatorcontrib><creatorcontrib>de Valpine, Perry</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Ecological applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eitzel, Melissa</au><au>Battles, John</au><au>York, Robert</au><au>Knape, Jonas</au><au>de Valpine, Perry</au><au>Finley, AO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating tree growth from complex forest monitoring data</atitle><jtitle>Ecological applications</jtitle><addtitle>Ecol Appl</addtitle><date>2013-09</date><risdate>2013</risdate><volume>23</volume><issue>6</issue><spage>1288</spage><epage>1296</epage><pages>1288-1296</pages><issn>1051-0761</issn><eissn>1939-5582</eissn><coden>ECAPE7</coden><abstract>Understanding tree growth as a function of tree size is important for a multitude of ecological and management applications. Determining what limits growth is of central interest, and forest inventory permanent plots are an abundant source of long-term information but are highly complex. Observation error and multiple sources of shared variation (spatial plot effects, temporal repeated measures, and a mosaic of sampling intervals) make these data challenging to use for growth estimation. We account for these complexities and incorporate potential limiting factors (tree size, competition, and resource supply) into a hierarchical state-space model. We estimate the diameter growth of white fir (
Abies concolor
) in the Sierra Nevada of California from forest inventory data, showing that estimating such a model is feasible in a Bayesian framework using readily available modeling tools. In this forest, white fir growth depends strongly on tree size, total plot basal area, and unexplained variation between individual trees. Plot-level resource supply variables (representing light, water, and nutrient availability) do not have a strong impact on inventory-size trees. This approach can be applied to other networks of permanent forest plots, leading to greater ecological insights on tree growth.</abstract><cop>Washington, DC</cop><pub>Ecological Society of America</pub><pmid>24147402</pmid><doi>10.1890/12-0504.1</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-0761 |
ispartof | Ecological applications, 2013-09, Vol.23 (6), p.1288-1296 |
issn | 1051-0761 1939-5582 |
language | eng |
recordid | cdi_proquest_miscellaneous_1443379995 |
source | Jstor Complete Legacy; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Abies concolor Biological and medical sciences California competition intensity Coniferous forests Ecological modeling Environmental Monitoring - methods Forest ecology Forest growth Forest management Forestry Fundamental and applied biological sciences. Psychology General forest ecology Generalities. Production, biomass. Quality of wood and forest products. General forest ecology hierarchical model individual variation Markov chain Monte Carlo Musical intervals OpenBUGS permanent plots Plant ecology Standard deviation state-space model Tree growth Trees Trees - growth & development |
title | Estimating tree growth from complex forest monitoring data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T07%3A27%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20tree%20growth%20from%20complex%20forest%20monitoring%20data&rft.jtitle=Ecological%20applications&rft.au=Eitzel,%20Melissa&rft.date=2013-09&rft.volume=23&rft.issue=6&rft.spage=1288&rft.epage=1296&rft.pages=1288-1296&rft.issn=1051-0761&rft.eissn=1939-5582&rft.coden=ECAPE7&rft_id=info:doi/10.1890/12-0504.1&rft_dat=%3Cjstor_proqu%3E23596824%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443379995&rft_id=info:pmid/24147402&rft_jstor_id=23596824&rfr_iscdi=true |