Automatic segmentation of the fetal cerebellum on ultrasound volumes, using a 3D statistical shape model
Previous work has shown that the segmentation of anatomical structures on 3D ultrasound data sets provides an important tool for the assessment of the fetal health. In this work, we present an algorithm based on a 3D statistical shape model to segment the fetal cerebellum on 3D ultrasound volumes. T...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 2013-09, Vol.51 (9), p.1021-1030 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1030 |
---|---|
container_issue | 9 |
container_start_page | 1021 |
container_title | Medical & biological engineering & computing |
container_volume | 51 |
creator | Gutierrez-Becker, Benjamin Arambula Cosio, Fernando Guzman Huerta, Mario E Benavides-Serralde, Jesus Andres Camargo-Marin, Lisbeth Medina Banuelos, Veronica |
description | Previous work has shown that the segmentation of anatomical structures on 3D ultrasound data sets provides an important tool for the assessment of the fetal health. In this work, we present an algorithm based on a 3D statistical shape model to segment the fetal cerebellum on 3D ultrasound volumes. This model is adjusted using an ad hoc objective function which is in turn optimized using the Nelder–Mead simplex algorithm. Our algorithm was tested on ultrasound volumes of the fetal brain taken from 20 pregnant women, between 18 and 24 gestational weeks. An intraclass correlation coefficient of 0.8528 and a mean Dice coefficient of 0.8 between cerebellar volumes measured using manual techniques and the volumes calculated using our algorithm were obtained. As far as we know, this is the first effort to automatically segment fetal intracranial structures on 3D ultrasound data. |
doi_str_mv | 10.1007/s11517-013-1082-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1443378049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3035996781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-eb999858374a736a82d3387581b2cce53e9b9351d5b674a6dddc2e2c710ce5b63</originalsourceid><addsrcrecordid>eNqNkU1rFTEUhoNY7LX6A9xIwI0Lp-bkY5JZlvpVKHSj65DJnPtRZibXnInQf2-GW0UEwVVC3uc8SXgZewXiEoSw7wnAgG0EqAaEkw08YRuwGhqhtX7KNgK0qCm4c_ac6F4ICUbqZ-xcqta1qpMbtr8qS5rCcoiccDfhvNR9mnna8mWPfItLGHnEjD2OY5l4jcq45ECpzAP_keoZ0jte6DDveODqA6fVQFVYB2kfjsinNOD4gp1tw0j48nG9YN8-ffx6_aW5vft8c31120RtYWmw77rOGaesDla1wclBKWeNg17GiEZh13fKwGD6tiLtMAxRoowWRE37Vl2wtyfvMafvBWnx04FifXyYMRXyoLVS1gnd_QcKruKmg4q--Qu9TyXP9SMrZbVQUphKwYmKORFl3PpjPkwhP3gQfm3MnxrztTG_NuZX8-tHc-knHH5P_KqoAvIEUI3mHeY_rv6n9SeB6Z_q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417403205</pqid></control><display><type>article</type><title>Automatic segmentation of the fetal cerebellum on ultrasound volumes, using a 3D statistical shape model</title><source>MEDLINE</source><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Gutierrez-Becker, Benjamin ; Arambula Cosio, Fernando ; Guzman Huerta, Mario E ; Benavides-Serralde, Jesus Andres ; Camargo-Marin, Lisbeth ; Medina Banuelos, Veronica</creator><creatorcontrib>Gutierrez-Becker, Benjamin ; Arambula Cosio, Fernando ; Guzman Huerta, Mario E ; Benavides-Serralde, Jesus Andres ; Camargo-Marin, Lisbeth ; Medina Banuelos, Veronica</creatorcontrib><description>Previous work has shown that the segmentation of anatomical structures on 3D ultrasound data sets provides an important tool for the assessment of the fetal health. In this work, we present an algorithm based on a 3D statistical shape model to segment the fetal cerebellum on 3D ultrasound volumes. This model is adjusted using an ad hoc objective function which is in turn optimized using the Nelder–Mead simplex algorithm. Our algorithm was tested on ultrasound volumes of the fetal brain taken from 20 pregnant women, between 18 and 24 gestational weeks. An intraclass correlation coefficient of 0.8528 and a mean Dice coefficient of 0.8 between cerebellar volumes measured using manual techniques and the volumes calculated using our algorithm were obtained. As far as we know, this is the first effort to automatically segment fetal intracranial structures on 3D ultrasound data.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-013-1082-1</identifier><identifier>PMID: 23686392</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Biomedical and Life Sciences ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biomedicine ; Brain research ; Cerebellum - diagnostic imaging ; Cerebellum - embryology ; Child development ; Computer Applications ; Echoencephalography - methods ; Female ; Fetuses ; Gestational age ; Human Physiology ; Humans ; Imaging ; Imaging, Three-Dimensional - methods ; Magnetic resonance imaging ; Medicine ; Models, Statistical ; Original Article ; Pregnancy ; Radiology ; Reproducibility of Results ; Studies ; Ultrasonic imaging ; Ultrasonography, Prenatal - methods</subject><ispartof>Medical & biological engineering & computing, 2013-09, Vol.51 (9), p.1021-1030</ispartof><rights>International Federation for Medical and Biological Engineering 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-eb999858374a736a82d3387581b2cce53e9b9351d5b674a6dddc2e2c710ce5b63</citedby><cites>FETCH-LOGICAL-c471t-eb999858374a736a82d3387581b2cce53e9b9351d5b674a6dddc2e2c710ce5b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-013-1082-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-013-1082-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23686392$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gutierrez-Becker, Benjamin</creatorcontrib><creatorcontrib>Arambula Cosio, Fernando</creatorcontrib><creatorcontrib>Guzman Huerta, Mario E</creatorcontrib><creatorcontrib>Benavides-Serralde, Jesus Andres</creatorcontrib><creatorcontrib>Camargo-Marin, Lisbeth</creatorcontrib><creatorcontrib>Medina Banuelos, Veronica</creatorcontrib><title>Automatic segmentation of the fetal cerebellum on ultrasound volumes, using a 3D statistical shape model</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Previous work has shown that the segmentation of anatomical structures on 3D ultrasound data sets provides an important tool for the assessment of the fetal health. In this work, we present an algorithm based on a 3D statistical shape model to segment the fetal cerebellum on 3D ultrasound volumes. This model is adjusted using an ad hoc objective function which is in turn optimized using the Nelder–Mead simplex algorithm. Our algorithm was tested on ultrasound volumes of the fetal brain taken from 20 pregnant women, between 18 and 24 gestational weeks. An intraclass correlation coefficient of 0.8528 and a mean Dice coefficient of 0.8 between cerebellar volumes measured using manual techniques and the volumes calculated using our algorithm were obtained. As far as we know, this is the first effort to automatically segment fetal intracranial structures on 3D ultrasound data.</description><subject>Algorithms</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Brain research</subject><subject>Cerebellum - diagnostic imaging</subject><subject>Cerebellum - embryology</subject><subject>Child development</subject><subject>Computer Applications</subject><subject>Echoencephalography - methods</subject><subject>Female</subject><subject>Fetuses</subject><subject>Gestational age</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Magnetic resonance imaging</subject><subject>Medicine</subject><subject>Models, Statistical</subject><subject>Original Article</subject><subject>Pregnancy</subject><subject>Radiology</subject><subject>Reproducibility of Results</subject><subject>Studies</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography, Prenatal - methods</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1rFTEUhoNY7LX6A9xIwI0Lp-bkY5JZlvpVKHSj65DJnPtRZibXnInQf2-GW0UEwVVC3uc8SXgZewXiEoSw7wnAgG0EqAaEkw08YRuwGhqhtX7KNgK0qCm4c_ac6F4ICUbqZ-xcqta1qpMbtr8qS5rCcoiccDfhvNR9mnna8mWPfItLGHnEjD2OY5l4jcq45ECpzAP_keoZ0jte6DDveODqA6fVQFVYB2kfjsinNOD4gp1tw0j48nG9YN8-ffx6_aW5vft8c31120RtYWmw77rOGaesDla1wclBKWeNg17GiEZh13fKwGD6tiLtMAxRoowWRE37Vl2wtyfvMafvBWnx04FifXyYMRXyoLVS1gnd_QcKruKmg4q--Qu9TyXP9SMrZbVQUphKwYmKORFl3PpjPkwhP3gQfm3MnxrztTG_NuZX8-tHc-knHH5P_KqoAvIEUI3mHeY_rv6n9SeB6Z_q</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Gutierrez-Becker, Benjamin</creator><creator>Arambula Cosio, Fernando</creator><creator>Guzman Huerta, Mario E</creator><creator>Benavides-Serralde, Jesus Andres</creator><creator>Camargo-Marin, Lisbeth</creator><creator>Medina Banuelos, Veronica</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope></search><sort><creationdate>20130901</creationdate><title>Automatic segmentation of the fetal cerebellum on ultrasound volumes, using a 3D statistical shape model</title><author>Gutierrez-Becker, Benjamin ; Arambula Cosio, Fernando ; Guzman Huerta, Mario E ; Benavides-Serralde, Jesus Andres ; Camargo-Marin, Lisbeth ; Medina Banuelos, Veronica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-eb999858374a736a82d3387581b2cce53e9b9351d5b674a6dddc2e2c710ce5b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Brain research</topic><topic>Cerebellum - diagnostic imaging</topic><topic>Cerebellum - embryology</topic><topic>Child development</topic><topic>Computer Applications</topic><topic>Echoencephalography - methods</topic><topic>Female</topic><topic>Fetuses</topic><topic>Gestational age</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Magnetic resonance imaging</topic><topic>Medicine</topic><topic>Models, Statistical</topic><topic>Original Article</topic><topic>Pregnancy</topic><topic>Radiology</topic><topic>Reproducibility of Results</topic><topic>Studies</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography, Prenatal - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutierrez-Becker, Benjamin</creatorcontrib><creatorcontrib>Arambula Cosio, Fernando</creatorcontrib><creatorcontrib>Guzman Huerta, Mario E</creatorcontrib><creatorcontrib>Benavides-Serralde, Jesus Andres</creatorcontrib><creatorcontrib>Camargo-Marin, Lisbeth</creatorcontrib><creatorcontrib>Medina Banuelos, Veronica</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutierrez-Becker, Benjamin</au><au>Arambula Cosio, Fernando</au><au>Guzman Huerta, Mario E</au><au>Benavides-Serralde, Jesus Andres</au><au>Camargo-Marin, Lisbeth</au><au>Medina Banuelos, Veronica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic segmentation of the fetal cerebellum on ultrasound volumes, using a 3D statistical shape model</atitle><jtitle>Medical & biological engineering & computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>51</volume><issue>9</issue><spage>1021</spage><epage>1030</epage><pages>1021-1030</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Previous work has shown that the segmentation of anatomical structures on 3D ultrasound data sets provides an important tool for the assessment of the fetal health. In this work, we present an algorithm based on a 3D statistical shape model to segment the fetal cerebellum on 3D ultrasound volumes. This model is adjusted using an ad hoc objective function which is in turn optimized using the Nelder–Mead simplex algorithm. Our algorithm was tested on ultrasound volumes of the fetal brain taken from 20 pregnant women, between 18 and 24 gestational weeks. An intraclass correlation coefficient of 0.8528 and a mean Dice coefficient of 0.8 between cerebellar volumes measured using manual techniques and the volumes calculated using our algorithm were obtained. As far as we know, this is the first effort to automatically segment fetal intracranial structures on 3D ultrasound data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>23686392</pmid><doi>10.1007/s11517-013-1082-1</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 2013-09, Vol.51 (9), p.1021-1030 |
issn | 0140-0118 1741-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_1443378049 |
source | MEDLINE; SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Algorithms Biomedical and Life Sciences Biomedical engineering Biomedical Engineering and Bioengineering Biomedicine Brain research Cerebellum - diagnostic imaging Cerebellum - embryology Child development Computer Applications Echoencephalography - methods Female Fetuses Gestational age Human Physiology Humans Imaging Imaging, Three-Dimensional - methods Magnetic resonance imaging Medicine Models, Statistical Original Article Pregnancy Radiology Reproducibility of Results Studies Ultrasonic imaging Ultrasonography, Prenatal - methods |
title | Automatic segmentation of the fetal cerebellum on ultrasound volumes, using a 3D statistical shape model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20segmentation%20of%20the%20fetal%20cerebellum%20on%20ultrasound%20volumes,%20using%20a%203D%20statistical%20shape%20model&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Gutierrez-Becker,%20Benjamin&rft.date=2013-09-01&rft.volume=51&rft.issue=9&rft.spage=1021&rft.epage=1030&rft.pages=1021-1030&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-013-1082-1&rft_dat=%3Cproquest_cross%3E3035996781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1417403205&rft_id=info:pmid/23686392&rfr_iscdi=true |