Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant
The low water solubility of polycyclic aromatic hydrocarbons is believed to limit their availability to microorganisms, which is a potential problem for bioremediation of polycyclic aromatic hydrocarbon-contaminated sites. Surfactants have been suggested to enhance the bioavailability of hydrophobic...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 1996-07, Vol.62 (7), p.2387-2392 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2392 |
---|---|
container_issue | 7 |
container_start_page | 2387 |
container_title | Applied and Environmental Microbiology |
container_volume | 62 |
creator | Grimberg, S.J. (Clarkson University, Potsdam, NY.) Stringfellow, W.T Aitken, M.D |
description | The low water solubility of polycyclic aromatic hydrocarbons is believed to limit their availability to microorganisms, which is a potential problem for bioremediation of polycyclic aromatic hydrocarbon-contaminated sites. Surfactants have been suggested to enhance the bioavailability of hydrophobic compounds, but both negative and positive effects of surfactants on biodegradation have been reported in the literature. Earlier, we presented mechanistic models of the effects of surfactants on phenanthrene dissolution and on the biodegradation kinetics of phenanthrene solubilized in surfactant micelles. In this study, we combined the biodegradation and dissolution models to quantify the influence of the surfactant Tergitol NP-10 on biodegradation of solid-phase phenanthrene by Pseudomonas stutzeri P16. Although micellized phenanthrene does not appear to be available directly to the bacterium, the ability of the surfactant to increase the phenanthrene dissolution rate resulted in an overall increase in bacterial growth rate in the presence of the surfactant. Experimental observations could be predicted well by the derived model with measured biokinetic and dissolution parameters. The proposed model therefore can serve as a base case for understanding the physical-chemical effects of surfactants on nonaqueous hydrocarbon bioavailability |
doi_str_mv | 10.1128/aem.62.7.2387-2392.1996 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_14420910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>13640699</sourcerecordid><originalsourceid>FETCH-LOGICAL-c761t-1b83b1deb8919f73e1c2f010bcf09d3d219fc6ef3c5bd9fdbbb8d477837771253</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso67j6BwSxinjXmo82HxdeyOIXLLiiex3S9KTNMk3GpFXGX2_qDIPrjV4Fcp73Pck5b1E8xajGmIhXGqaakZrXhApeESpJjaVkd4oNRlJULaXsbrFBSMqKkAbdLx6kdIMQahATZ8WZ4Fy2nG-K9HnRfnZ27_xQziOUnQs9DFH3enbBl8GWuxF8ZsYIPpf35VWCpQ9T8DqVaV7mnxBdeYVZ6fxvh12EBN7AqtWlDz77OFOmJVpt5uz0sLhn9TbBo-N5Xly_e_v14kN1-en9x4s3l5XhDM8V7gTtcA-dkFhaTgEbYhFGnbFI9rQn-dYwsNS0XS9t33Wd6BvOBeWcY9LS8-L1wXe3dBP0Bvwc9Vbtopt03Kugnbpd8W5UQ_iuMBOIoKx_edTH8G2BNKvJJQPbrfYQlqRwy9o8SPJvsGkIkvg_HCnLC5Iyg8__Am_CEn2eliKolXm7cm3LD5CJIaUI9vQ1jNSaEpVTohhRXK0pUWtK1JqSrHzy52ROumMscv3Fsa6T0VsbtTcunTCKBcdifcCzAza6YfzhIiidpttNM_P4wFgdlB5itrn-IlleTx7cLxtT2_I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205933692</pqid></control><display><type>article</type><title>Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant</title><source>MEDLINE</source><source>ASM_美国微生物学会期刊</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Grimberg, S.J. (Clarkson University, Potsdam, NY.) ; Stringfellow, W.T ; Aitken, M.D</creator><creatorcontrib>Grimberg, S.J. (Clarkson University, Potsdam, NY.) ; Stringfellow, W.T ; Aitken, M.D</creatorcontrib><description>The low water solubility of polycyclic aromatic hydrocarbons is believed to limit their availability to microorganisms, which is a potential problem for bioremediation of polycyclic aromatic hydrocarbon-contaminated sites. Surfactants have been suggested to enhance the bioavailability of hydrophobic compounds, but both negative and positive effects of surfactants on biodegradation have been reported in the literature. Earlier, we presented mechanistic models of the effects of surfactants on phenanthrene dissolution and on the biodegradation kinetics of phenanthrene solubilized in surfactant micelles. In this study, we combined the biodegradation and dissolution models to quantify the influence of the surfactant Tergitol NP-10 on biodegradation of solid-phase phenanthrene by Pseudomonas stutzeri P16. Although micellized phenanthrene does not appear to be available directly to the bacterium, the ability of the surfactant to increase the phenanthrene dissolution rate resulted in an overall increase in bacterial growth rate in the presence of the surfactant. Experimental observations could be predicted well by the derived model with measured biokinetic and dissolution parameters. The proposed model therefore can serve as a base case for understanding the physical-chemical effects of surfactants on nonaqueous hydrocarbon bioavailability</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/aem.62.7.2387-2392.1996</identifier><identifier>PMID: 8779577</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>AGUAS SUBTERRANEAS ; Bacteria ; Biodegradable materials ; BIODEGRADACION ; BIODEGRADATION ; Biodegradation of pollutants ; Biodegradation, Environmental ; Biological and medical sciences ; Biotechnology ; Contamination ; CONTROL DE LA CONTAMINACION ; Dissolution ; EAU SOUTERRAINE ; Environment and pollution ; ESTIMULO ; Fundamental and applied biological sciences. Psychology ; HIDROCARBUROS ; HYDROCARBURE ; INDICE DE CRECIMIENTO ; Industrial applications and implications. Economical aspects ; LUTTE ANTIPOLLUTION ; Micelles ; MODELE MATHEMATIQUE ; MODELOS MATEMATICOS ; Models, Biological ; Phenanthrenes - metabolism ; POLLUTION DE L'EAU ; Poloxalene ; POLUCION DEL AGUA ; PSEUDOMONAS ; Pseudomonas - growth & development ; Pseudomonas - metabolism ; Pseudomonas stutzeri ; Soil Pollutants - metabolism ; Soils ; SOL POLLUE ; SOLUBILIDAD ; SOLUBILITE ; Solubility ; STIMULUS ; SUELO CONTAMINADO ; Surface-Active Agents ; SURFACTANT ; SURFACTANTES ; TAUX DE CROISSANCE ; Water</subject><ispartof>Applied and Environmental Microbiology, 1996-07, Vol.62 (7), p.2387-2392</ispartof><rights>1996 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jul 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c761t-1b83b1deb8919f73e1c2f010bcf09d3d219fc6ef3c5bd9fdbbb8d477837771253</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC168020/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC168020/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,3192,3193,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3187182$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8779577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grimberg, S.J. (Clarkson University, Potsdam, NY.)</creatorcontrib><creatorcontrib>Stringfellow, W.T</creatorcontrib><creatorcontrib>Aitken, M.D</creatorcontrib><title>Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>The low water solubility of polycyclic aromatic hydrocarbons is believed to limit their availability to microorganisms, which is a potential problem for bioremediation of polycyclic aromatic hydrocarbon-contaminated sites. Surfactants have been suggested to enhance the bioavailability of hydrophobic compounds, but both negative and positive effects of surfactants on biodegradation have been reported in the literature. Earlier, we presented mechanistic models of the effects of surfactants on phenanthrene dissolution and on the biodegradation kinetics of phenanthrene solubilized in surfactant micelles. In this study, we combined the biodegradation and dissolution models to quantify the influence of the surfactant Tergitol NP-10 on biodegradation of solid-phase phenanthrene by Pseudomonas stutzeri P16. Although micellized phenanthrene does not appear to be available directly to the bacterium, the ability of the surfactant to increase the phenanthrene dissolution rate resulted in an overall increase in bacterial growth rate in the presence of the surfactant. Experimental observations could be predicted well by the derived model with measured biokinetic and dissolution parameters. The proposed model therefore can serve as a base case for understanding the physical-chemical effects of surfactants on nonaqueous hydrocarbon bioavailability</description><subject>AGUAS SUBTERRANEAS</subject><subject>Bacteria</subject><subject>Biodegradable materials</subject><subject>BIODEGRADACION</subject><subject>BIODEGRADATION</subject><subject>Biodegradation of pollutants</subject><subject>Biodegradation, Environmental</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Contamination</subject><subject>CONTROL DE LA CONTAMINACION</subject><subject>Dissolution</subject><subject>EAU SOUTERRAINE</subject><subject>Environment and pollution</subject><subject>ESTIMULO</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>HIDROCARBUROS</subject><subject>HYDROCARBURE</subject><subject>INDICE DE CRECIMIENTO</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>LUTTE ANTIPOLLUTION</subject><subject>Micelles</subject><subject>MODELE MATHEMATIQUE</subject><subject>MODELOS MATEMATICOS</subject><subject>Models, Biological</subject><subject>Phenanthrenes - metabolism</subject><subject>POLLUTION DE L'EAU</subject><subject>Poloxalene</subject><subject>POLUCION DEL AGUA</subject><subject>PSEUDOMONAS</subject><subject>Pseudomonas - growth & development</subject><subject>Pseudomonas - metabolism</subject><subject>Pseudomonas stutzeri</subject><subject>Soil Pollutants - metabolism</subject><subject>Soils</subject><subject>SOL POLLUE</subject><subject>SOLUBILIDAD</subject><subject>SOLUBILITE</subject><subject>Solubility</subject><subject>STIMULUS</subject><subject>SUELO CONTAMINADO</subject><subject>Surface-Active Agents</subject><subject>SURFACTANT</subject><subject>SURFACTANTES</subject><subject>TAUX DE CROISSANCE</subject><subject>Water</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkl2L1DAUhoso67j6BwSxinjXmo82HxdeyOIXLLiiex3S9KTNMk3GpFXGX2_qDIPrjV4Fcp73Pck5b1E8xajGmIhXGqaakZrXhApeESpJjaVkd4oNRlJULaXsbrFBSMqKkAbdLx6kdIMQahATZ8WZ4Fy2nG-K9HnRfnZ27_xQziOUnQs9DFH3enbBl8GWuxF8ZsYIPpf35VWCpQ9T8DqVaV7mnxBdeYVZ6fxvh12EBN7AqtWlDz77OFOmJVpt5uz0sLhn9TbBo-N5Xly_e_v14kN1-en9x4s3l5XhDM8V7gTtcA-dkFhaTgEbYhFGnbFI9rQn-dYwsNS0XS9t33Wd6BvOBeWcY9LS8-L1wXe3dBP0Bvwc9Vbtopt03Kugnbpd8W5UQ_iuMBOIoKx_edTH8G2BNKvJJQPbrfYQlqRwy9o8SPJvsGkIkvg_HCnLC5Iyg8__Am_CEn2eliKolXm7cm3LD5CJIaUI9vQ1jNSaEpVTohhRXK0pUWtK1JqSrHzy52ROumMscv3Fsa6T0VsbtTcunTCKBcdifcCzAza6YfzhIiidpttNM_P4wFgdlB5itrn-IlleTx7cLxtT2_I</recordid><startdate>19960701</startdate><enddate>19960701</enddate><creator>Grimberg, S.J. (Clarkson University, Potsdam, NY.)</creator><creator>Stringfellow, W.T</creator><creator>Aitken, M.D</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7QH</scope><scope>7TV</scope><scope>5PM</scope></search><sort><creationdate>19960701</creationdate><title>Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant</title><author>Grimberg, S.J. (Clarkson University, Potsdam, NY.) ; Stringfellow, W.T ; Aitken, M.D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c761t-1b83b1deb8919f73e1c2f010bcf09d3d219fc6ef3c5bd9fdbbb8d477837771253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>AGUAS SUBTERRANEAS</topic><topic>Bacteria</topic><topic>Biodegradable materials</topic><topic>BIODEGRADACION</topic><topic>BIODEGRADATION</topic><topic>Biodegradation of pollutants</topic><topic>Biodegradation, Environmental</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Contamination</topic><topic>CONTROL DE LA CONTAMINACION</topic><topic>Dissolution</topic><topic>EAU SOUTERRAINE</topic><topic>Environment and pollution</topic><topic>ESTIMULO</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>HIDROCARBUROS</topic><topic>HYDROCARBURE</topic><topic>INDICE DE CRECIMIENTO</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>LUTTE ANTIPOLLUTION</topic><topic>Micelles</topic><topic>MODELE MATHEMATIQUE</topic><topic>MODELOS MATEMATICOS</topic><topic>Models, Biological</topic><topic>Phenanthrenes - metabolism</topic><topic>POLLUTION DE L'EAU</topic><topic>Poloxalene</topic><topic>POLUCION DEL AGUA</topic><topic>PSEUDOMONAS</topic><topic>Pseudomonas - growth & development</topic><topic>Pseudomonas - metabolism</topic><topic>Pseudomonas stutzeri</topic><topic>Soil Pollutants - metabolism</topic><topic>Soils</topic><topic>SOL POLLUE</topic><topic>SOLUBILIDAD</topic><topic>SOLUBILITE</topic><topic>Solubility</topic><topic>STIMULUS</topic><topic>SUELO CONTAMINADO</topic><topic>Surface-Active Agents</topic><topic>SURFACTANT</topic><topic>SURFACTANTES</topic><topic>TAUX DE CROISSANCE</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimberg, S.J. (Clarkson University, Potsdam, NY.)</creatorcontrib><creatorcontrib>Stringfellow, W.T</creatorcontrib><creatorcontrib>Aitken, M.D</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimberg, S.J. (Clarkson University, Potsdam, NY.)</au><au>Stringfellow, W.T</au><au>Aitken, M.D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>1996-07-01</date><risdate>1996</risdate><volume>62</volume><issue>7</issue><spage>2387</spage><epage>2392</epage><pages>2387-2392</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>The low water solubility of polycyclic aromatic hydrocarbons is believed to limit their availability to microorganisms, which is a potential problem for bioremediation of polycyclic aromatic hydrocarbon-contaminated sites. Surfactants have been suggested to enhance the bioavailability of hydrophobic compounds, but both negative and positive effects of surfactants on biodegradation have been reported in the literature. Earlier, we presented mechanistic models of the effects of surfactants on phenanthrene dissolution and on the biodegradation kinetics of phenanthrene solubilized in surfactant micelles. In this study, we combined the biodegradation and dissolution models to quantify the influence of the surfactant Tergitol NP-10 on biodegradation of solid-phase phenanthrene by Pseudomonas stutzeri P16. Although micellized phenanthrene does not appear to be available directly to the bacterium, the ability of the surfactant to increase the phenanthrene dissolution rate resulted in an overall increase in bacterial growth rate in the presence of the surfactant. Experimental observations could be predicted well by the derived model with measured biokinetic and dissolution parameters. The proposed model therefore can serve as a base case for understanding the physical-chemical effects of surfactants on nonaqueous hydrocarbon bioavailability</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>8779577</pmid><doi>10.1128/aem.62.7.2387-2392.1996</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 1996-07, Vol.62 (7), p.2387-2392 |
issn | 0099-2240 1098-5336 |
language | eng |
recordid | cdi_proquest_miscellaneous_14420910 |
source | MEDLINE; ASM_美国微生物学会期刊; PubMed Central; Alma/SFX Local Collection |
subjects | AGUAS SUBTERRANEAS Bacteria Biodegradable materials BIODEGRADACION BIODEGRADATION Biodegradation of pollutants Biodegradation, Environmental Biological and medical sciences Biotechnology Contamination CONTROL DE LA CONTAMINACION Dissolution EAU SOUTERRAINE Environment and pollution ESTIMULO Fundamental and applied biological sciences. Psychology HIDROCARBUROS HYDROCARBURE INDICE DE CRECIMIENTO Industrial applications and implications. Economical aspects LUTTE ANTIPOLLUTION Micelles MODELE MATHEMATIQUE MODELOS MATEMATICOS Models, Biological Phenanthrenes - metabolism POLLUTION DE L'EAU Poloxalene POLUCION DEL AGUA PSEUDOMONAS Pseudomonas - growth & development Pseudomonas - metabolism Pseudomonas stutzeri Soil Pollutants - metabolism Soils SOL POLLUE SOLUBILIDAD SOLUBILITE Solubility STIMULUS SUELO CONTAMINADO Surface-Active Agents SURFACTANT SURFACTANTES TAUX DE CROISSANCE Water |
title | Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T15%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20biodegradation%20of%20phenanthrene%20by%20Pseudomonas%20stutzeri%20P16%20in%20the%20presence%20of%20a%20nonionic%20surfactant&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Grimberg,%20S.J.%20(Clarkson%20University,%20Potsdam,%20NY.)&rft.date=1996-07-01&rft.volume=62&rft.issue=7&rft.spage=2387&rft.epage=2392&rft.pages=2387-2392&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/aem.62.7.2387-2392.1996&rft_dat=%3Cproquest_pubme%3E13640699%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205933692&rft_id=info:pmid/8779577&rfr_iscdi=true |