Adaptive wavelet transform-based method for recognizing characteristic oscillatory patterns
The problem concerning the automatic recognition of characteristic oscillatory patterns in multicomponent signals is investigated using the brain’s electric activity records, electroencephalograms (EEGs), as an example. It has been ascertained that recognition errors can be decreased by optimally se...
Gespeichert in:
Veröffentlicht in: | Journal of communications technology & electronics 2013-08, Vol.58 (8), p.790-795 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 795 |
---|---|
container_issue | 8 |
container_start_page | 790 |
container_title | Journal of communications technology & electronics |
container_volume | 58 |
creator | Nazimov, A. I. Pavlov, A. N. Hramov, A. E. Grubov, V. V. Sitnikova, E. Yu Koronovskii, A. A. |
description | The problem concerning the automatic recognition of characteristic oscillatory patterns in multicomponent signals is investigated using the brain’s electric activity records, electroencephalograms (EEGs), as an example. It has been ascertained that recognition errors can be decreased by optimally selecting continuous wavelet transform (CWT) parameters to obtain characteristics describing the most important information on analyzed patterns. The adaptive CWT-based method for identifying the characteristic types of EEG rhythmic activity is proposed. |
doi_str_mv | 10.1134/S1064226913070115 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439783142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A342875442</galeid><sourcerecordid>A342875442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-6ff85204f749168d2283230b183b152d82dec918310a5295de38f727f11a34953</originalsourceid><addsrcrecordid>eNp1klmLFDEQgBtRcF39Ab41-KJgr6kcfTwOi8fCguDqkw8hk670ZOlOxlRmdf31ZhzBHQ8COaq-ryiKVNVTYGcAQr66AtZKztsBBOsYgLpXnYBSqmmV6u6Xe0k3-_zD6hHRNWNiaJk4qT6vRrPN_gbrr-YGZ8x1TiaQi2lp1oZwrBfMmzjWJVIntHEK_rsPU203JhmbMXnK3taRrJ9nk2O6rbcml3igx9UDZ2bCJ7_O0-rTm9cfz981l-_fXpyvLhsr-y43rXO94ky6Tg7Q9iPnveCCraEXa1B87PmIdigvYEbxQY0oetfxzgEYIQclTqvnh7rbFL_skLJePFks7QSMO9IgxdAVXfKCPvsDvY67FEp3ep_mwEGJ39RkZtQ-uFiGYvdF9UpI3ndK_qx19g-qrBEXb2NA50v8SHhxJBQm47c8mR2Rvrj6cMy-vMOud-QDUtnIT5tMB-UIhwNuUyRK6PQ2-cWkWw1M7z-I_uuDFIcfHCpsmDDdmcV_pR_nQ7kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1423212153</pqid></control><display><type>article</type><title>Adaptive wavelet transform-based method for recognizing characteristic oscillatory patterns</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nazimov, A. I. ; Pavlov, A. N. ; Hramov, A. E. ; Grubov, V. V. ; Sitnikova, E. Yu ; Koronovskii, A. A.</creator><creatorcontrib>Nazimov, A. I. ; Pavlov, A. N. ; Hramov, A. E. ; Grubov, V. V. ; Sitnikova, E. Yu ; Koronovskii, A. A.</creatorcontrib><description>The problem concerning the automatic recognition of characteristic oscillatory patterns in multicomponent signals is investigated using the brain’s electric activity records, electroencephalograms (EEGs), as an example. It has been ascertained that recognition errors can be decreased by optimally selecting continuous wavelet transform (CWT) parameters to obtain characteristics describing the most important information on analyzed patterns. The adaptive CWT-based method for identifying the characteristic types of EEG rhythmic activity is proposed.</description><identifier>ISSN: 1064-2269</identifier><identifier>EISSN: 1555-6557</identifier><identifier>DOI: 10.1134/S1064226913070115</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis ; Brain ; Character recognition ; Communications Engineering ; Electroencephalography ; Electronics ; Engineering ; Error analysis ; Fourier transforms ; Investigations ; Medical equipment ; Methods ; Networks ; Optimization ; Pattern recognition ; Recognition ; Signal processing ; Studies ; Theory and Methods of Signal Processing ; Wavelet ; Wavelet transforms</subject><ispartof>Journal of communications technology & electronics, 2013-08, Vol.58 (8), p.790-795</ispartof><rights>Pleiades Publishing, Ltd. 2013</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-6ff85204f749168d2283230b183b152d82dec918310a5295de38f727f11a34953</citedby><cites>FETCH-LOGICAL-c487t-6ff85204f749168d2283230b183b152d82dec918310a5295de38f727f11a34953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064226913070115$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064226913070115$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nazimov, A. I.</creatorcontrib><creatorcontrib>Pavlov, A. N.</creatorcontrib><creatorcontrib>Hramov, A. E.</creatorcontrib><creatorcontrib>Grubov, V. V.</creatorcontrib><creatorcontrib>Sitnikova, E. Yu</creatorcontrib><creatorcontrib>Koronovskii, A. A.</creatorcontrib><title>Adaptive wavelet transform-based method for recognizing characteristic oscillatory patterns</title><title>Journal of communications technology & electronics</title><addtitle>J. Commun. Technol. Electron</addtitle><description>The problem concerning the automatic recognition of characteristic oscillatory patterns in multicomponent signals is investigated using the brain’s electric activity records, electroencephalograms (EEGs), as an example. It has been ascertained that recognition errors can be decreased by optimally selecting continuous wavelet transform (CWT) parameters to obtain characteristics describing the most important information on analyzed patterns. The adaptive CWT-based method for identifying the characteristic types of EEG rhythmic activity is proposed.</description><subject>Analysis</subject><subject>Brain</subject><subject>Character recognition</subject><subject>Communications Engineering</subject><subject>Electroencephalography</subject><subject>Electronics</subject><subject>Engineering</subject><subject>Error analysis</subject><subject>Fourier transforms</subject><subject>Investigations</subject><subject>Medical equipment</subject><subject>Methods</subject><subject>Networks</subject><subject>Optimization</subject><subject>Pattern recognition</subject><subject>Recognition</subject><subject>Signal processing</subject><subject>Studies</subject><subject>Theory and Methods of Signal Processing</subject><subject>Wavelet</subject><subject>Wavelet transforms</subject><issn>1064-2269</issn><issn>1555-6557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>BENPR</sourceid><recordid>eNp1klmLFDEQgBtRcF39Ab41-KJgr6kcfTwOi8fCguDqkw8hk670ZOlOxlRmdf31ZhzBHQ8COaq-ryiKVNVTYGcAQr66AtZKztsBBOsYgLpXnYBSqmmV6u6Xe0k3-_zD6hHRNWNiaJk4qT6vRrPN_gbrr-YGZ8x1TiaQi2lp1oZwrBfMmzjWJVIntHEK_rsPU203JhmbMXnK3taRrJ9nk2O6rbcml3igx9UDZ2bCJ7_O0-rTm9cfz981l-_fXpyvLhsr-y43rXO94ky6Tg7Q9iPnveCCraEXa1B87PmIdigvYEbxQY0oetfxzgEYIQclTqvnh7rbFL_skLJePFks7QSMO9IgxdAVXfKCPvsDvY67FEp3ep_mwEGJ39RkZtQ-uFiGYvdF9UpI3ndK_qx19g-qrBEXb2NA50v8SHhxJBQm47c8mR2Rvrj6cMy-vMOud-QDUtnIT5tMB-UIhwNuUyRK6PQ2-cWkWw1M7z-I_uuDFIcfHCpsmDDdmcV_pR_nQ7kg</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Nazimov, A. I.</creator><creator>Pavlov, A. N.</creator><creator>Hramov, A. E.</creator><creator>Grubov, V. V.</creator><creator>Sitnikova, E. Yu</creator><creator>Koronovskii, A. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>3V.</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>88K</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>M0C</scope><scope>M2P</scope><scope>M2T</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20130801</creationdate><title>Adaptive wavelet transform-based method for recognizing characteristic oscillatory patterns</title><author>Nazimov, A. I. ; Pavlov, A. N. ; Hramov, A. E. ; Grubov, V. V. ; Sitnikova, E. Yu ; Koronovskii, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-6ff85204f749168d2283230b183b152d82dec918310a5295de38f727f11a34953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Brain</topic><topic>Character recognition</topic><topic>Communications Engineering</topic><topic>Electroencephalography</topic><topic>Electronics</topic><topic>Engineering</topic><topic>Error analysis</topic><topic>Fourier transforms</topic><topic>Investigations</topic><topic>Medical equipment</topic><topic>Methods</topic><topic>Networks</topic><topic>Optimization</topic><topic>Pattern recognition</topic><topic>Recognition</topic><topic>Signal processing</topic><topic>Studies</topic><topic>Theory and Methods of Signal Processing</topic><topic>Wavelet</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nazimov, A. I.</creatorcontrib><creatorcontrib>Pavlov, A. N.</creatorcontrib><creatorcontrib>Hramov, A. E.</creatorcontrib><creatorcontrib>Grubov, V. V.</creatorcontrib><creatorcontrib>Sitnikova, E. Yu</creatorcontrib><creatorcontrib>Koronovskii, A. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of communications technology & electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nazimov, A. I.</au><au>Pavlov, A. N.</au><au>Hramov, A. E.</au><au>Grubov, V. V.</au><au>Sitnikova, E. Yu</au><au>Koronovskii, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive wavelet transform-based method for recognizing characteristic oscillatory patterns</atitle><jtitle>Journal of communications technology & electronics</jtitle><stitle>J. Commun. Technol. Electron</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>58</volume><issue>8</issue><spage>790</spage><epage>795</epage><pages>790-795</pages><issn>1064-2269</issn><eissn>1555-6557</eissn><abstract>The problem concerning the automatic recognition of characteristic oscillatory patterns in multicomponent signals is investigated using the brain’s electric activity records, electroencephalograms (EEGs), as an example. It has been ascertained that recognition errors can be decreased by optimally selecting continuous wavelet transform (CWT) parameters to obtain characteristics describing the most important information on analyzed patterns. The adaptive CWT-based method for identifying the characteristic types of EEG rhythmic activity is proposed.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1134/S1064226913070115</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-2269 |
ispartof | Journal of communications technology & electronics, 2013-08, Vol.58 (8), p.790-795 |
issn | 1064-2269 1555-6557 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439783142 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Brain Character recognition Communications Engineering Electroencephalography Electronics Engineering Error analysis Fourier transforms Investigations Medical equipment Methods Networks Optimization Pattern recognition Recognition Signal processing Studies Theory and Methods of Signal Processing Wavelet Wavelet transforms |
title | Adaptive wavelet transform-based method for recognizing characteristic oscillatory patterns |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A54%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20wavelet%20transform-based%20method%20for%20recognizing%20characteristic%20oscillatory%20patterns&rft.jtitle=Journal%20of%20communications%20technology%20&%20electronics&rft.au=Nazimov,%20A.%20I.&rft.date=2013-08-01&rft.volume=58&rft.issue=8&rft.spage=790&rft.epage=795&rft.pages=790-795&rft.issn=1064-2269&rft.eissn=1555-6557&rft_id=info:doi/10.1134/S1064226913070115&rft_dat=%3Cgale_proqu%3EA342875442%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1423212153&rft_id=info:pmid/&rft_galeid=A342875442&rfr_iscdi=true |