A study on thermal behavior of a poly(VDF-CTFE) copolymers binder for high energy materials

This article describes a study on thermal behavior of poly(vinylidene fluoride‐chlorotrifluoroetheylene) [poly(VDF‐CTFE)] copolymers as polymeric binders of specific interest for high energy materials (HEMs) composites by thermal analytical techniques. The non‐isothermal thermogravimetry (TG) for po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2013-02, Vol.127 (3), p.1751-1757
Hauptverfasser: Singh, Arjun, Soni, P. K., Shekharam, T., Srivastava, Alok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1757
container_issue 3
container_start_page 1751
container_title Journal of applied polymer science
container_volume 127
creator Singh, Arjun
Soni, P. K.
Shekharam, T.
Srivastava, Alok
description This article describes a study on thermal behavior of poly(vinylidene fluoride‐chlorotrifluoroetheylene) [poly(VDF‐CTFE)] copolymers as polymeric binders of specific interest for high energy materials (HEMs) composites by thermal analytical techniques. The non‐isothermal thermogravimetry (TG) for poly (VDF‐CTFE) copolymers was recorded in air and N2 atmospheres. The results of TG thermograms show that poly(VDF‐CTFE) copolymers get degrade at lower temperature when in air than in N2 atmosphere. In the derivative curve, there was single maximum degradation peak (Tmax) indicating one‐stage degradation of poly(VDF‐CTFE) copolymers for all the samples. The other thermal properties such as glass transition temperature (Tg) and degradation temperature (Td) for poly(VDF‐CTFE) copolymers were measured by employing differential scanning calorimeter (DSC) technique. The kinetic parameters related to thermal degradation of poly(VDF‐CTFE) copolymers were investigated through non‐isothermal Kissinger kinetic method using DSC method. The activation energies for thermal degradation of poly(VDF‐CTFE) copolymers were found in a range of 218–278 kJ/mol. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
doi_str_mv 10.1002/app.37780
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439782324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2805390091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4350-68e001a896e2f515984fcfa855c148bcc12bc695d71c53ac44882ff19aa23a813</originalsourceid><addsrcrecordid>eNp1kMFu1DAQhi0EEkvhwBtYQkjtIa3HjhP7uFq6W6SKRqLAgYPl9dpdlyRO7Sxt3h4vW3qoxGmkme__NPoReg_kFAihZ3oYTlldC_ICzYDIuigrKl6iWb5BIaTkr9GblG4JAeCkmqGfc5zG3WbCocfj1sZOt3htt_q3DxEHhzUeQjsdf_-0LBbXy_MTbMJ-0dmY8Nr3Gxuxy-TW32yx7W28mXCnRxu9btNb9MrlYd89ziP0bXl-vbgoLq9Wnxfzy8KUjJOiEja_o4WsLHUcuBSlM04Lzg2UYm0M0LWpJN_UYDjTpiyFoM6B1JoyLYAdoeODd4jhbmfTqDqfjG1b3duwSwpKJmtBGS0z-uEZeht2sc_fKQDKOa0E7IUnB8rEkFK0Tg3RdzpOCoja16xyzepvzZn9-GjUyejWRd0bn54CtJJQMy4yd3bg7n1rp_8L1bxp_pmLQ8Kn0T48JXT8paqa1Vz9-LJSDW8uGv51pRj7AzPnmHY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1125526811</pqid></control><display><type>article</type><title>A study on thermal behavior of a poly(VDF-CTFE) copolymers binder for high energy materials</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Singh, Arjun ; Soni, P. K. ; Shekharam, T. ; Srivastava, Alok</creator><creatorcontrib>Singh, Arjun ; Soni, P. K. ; Shekharam, T. ; Srivastava, Alok</creatorcontrib><description>This article describes a study on thermal behavior of poly(vinylidene fluoride‐chlorotrifluoroetheylene) [poly(VDF‐CTFE)] copolymers as polymeric binders of specific interest for high energy materials (HEMs) composites by thermal analytical techniques. The non‐isothermal thermogravimetry (TG) for poly (VDF‐CTFE) copolymers was recorded in air and N2 atmospheres. The results of TG thermograms show that poly(VDF‐CTFE) copolymers get degrade at lower temperature when in air than in N2 atmosphere. In the derivative curve, there was single maximum degradation peak (Tmax) indicating one‐stage degradation of poly(VDF‐CTFE) copolymers for all the samples. The other thermal properties such as glass transition temperature (Tg) and degradation temperature (Td) for poly(VDF‐CTFE) copolymers were measured by employing differential scanning calorimeter (DSC) technique. The kinetic parameters related to thermal degradation of poly(VDF‐CTFE) copolymers were investigated through non‐isothermal Kissinger kinetic method using DSC method. The activation energies for thermal degradation of poly(VDF‐CTFE) copolymers were found in a range of 218–278 kJ/mol. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.37780</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Binders ; Chemical reactions and properties ; Copolymers ; Degradation ; Derivatives ; differential scanning calorimeter ; Differential scanning calorimetry ; Exact sciences and technology ; fluoropolymer ; Materials science ; Mathematical analysis ; Organic polymers ; Physicochemistry of polymers ; Polymers ; Reproduction ; Thermal degradation ; thermal kinetics ; thermal properties ; thermogravimetry</subject><ispartof>Journal of applied polymer science, 2013-02, Vol.127 (3), p.1751-1757</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4350-68e001a896e2f515984fcfa855c148bcc12bc695d71c53ac44882ff19aa23a813</citedby><cites>FETCH-LOGICAL-c4350-68e001a896e2f515984fcfa855c148bcc12bc695d71c53ac44882ff19aa23a813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.37780$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.37780$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26917358$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Arjun</creatorcontrib><creatorcontrib>Soni, P. K.</creatorcontrib><creatorcontrib>Shekharam, T.</creatorcontrib><creatorcontrib>Srivastava, Alok</creatorcontrib><title>A study on thermal behavior of a poly(VDF-CTFE) copolymers binder for high energy materials</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>This article describes a study on thermal behavior of poly(vinylidene fluoride‐chlorotrifluoroetheylene) [poly(VDF‐CTFE)] copolymers as polymeric binders of specific interest for high energy materials (HEMs) composites by thermal analytical techniques. The non‐isothermal thermogravimetry (TG) for poly (VDF‐CTFE) copolymers was recorded in air and N2 atmospheres. The results of TG thermograms show that poly(VDF‐CTFE) copolymers get degrade at lower temperature when in air than in N2 atmosphere. In the derivative curve, there was single maximum degradation peak (Tmax) indicating one‐stage degradation of poly(VDF‐CTFE) copolymers for all the samples. The other thermal properties such as glass transition temperature (Tg) and degradation temperature (Td) for poly(VDF‐CTFE) copolymers were measured by employing differential scanning calorimeter (DSC) technique. The kinetic parameters related to thermal degradation of poly(VDF‐CTFE) copolymers were investigated through non‐isothermal Kissinger kinetic method using DSC method. The activation energies for thermal degradation of poly(VDF‐CTFE) copolymers were found in a range of 218–278 kJ/mol. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013</description><subject>Applied sciences</subject><subject>Binders</subject><subject>Chemical reactions and properties</subject><subject>Copolymers</subject><subject>Degradation</subject><subject>Derivatives</subject><subject>differential scanning calorimeter</subject><subject>Differential scanning calorimetry</subject><subject>Exact sciences and technology</subject><subject>fluoropolymer</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polymers</subject><subject>Reproduction</subject><subject>Thermal degradation</subject><subject>thermal kinetics</subject><subject>thermal properties</subject><subject>thermogravimetry</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kMFu1DAQhi0EEkvhwBtYQkjtIa3HjhP7uFq6W6SKRqLAgYPl9dpdlyRO7Sxt3h4vW3qoxGmkme__NPoReg_kFAihZ3oYTlldC_ICzYDIuigrKl6iWb5BIaTkr9GblG4JAeCkmqGfc5zG3WbCocfj1sZOt3htt_q3DxEHhzUeQjsdf_-0LBbXy_MTbMJ-0dmY8Nr3Gxuxy-TW32yx7W28mXCnRxu9btNb9MrlYd89ziP0bXl-vbgoLq9Wnxfzy8KUjJOiEja_o4WsLHUcuBSlM04Lzg2UYm0M0LWpJN_UYDjTpiyFoM6B1JoyLYAdoeODd4jhbmfTqDqfjG1b3duwSwpKJmtBGS0z-uEZeht2sc_fKQDKOa0E7IUnB8rEkFK0Tg3RdzpOCoja16xyzepvzZn9-GjUyejWRd0bn54CtJJQMy4yd3bg7n1rp_8L1bxp_pmLQ8Kn0T48JXT8paqa1Vz9-LJSDW8uGv51pRj7AzPnmHY</recordid><startdate>20130205</startdate><enddate>20130205</enddate><creator>Singh, Arjun</creator><creator>Soni, P. K.</creator><creator>Shekharam, T.</creator><creator>Srivastava, Alok</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20130205</creationdate><title>A study on thermal behavior of a poly(VDF-CTFE) copolymers binder for high energy materials</title><author>Singh, Arjun ; Soni, P. K. ; Shekharam, T. ; Srivastava, Alok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4350-68e001a896e2f515984fcfa855c148bcc12bc695d71c53ac44882ff19aa23a813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Binders</topic><topic>Chemical reactions and properties</topic><topic>Copolymers</topic><topic>Degradation</topic><topic>Derivatives</topic><topic>differential scanning calorimeter</topic><topic>Differential scanning calorimetry</topic><topic>Exact sciences and technology</topic><topic>fluoropolymer</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polymers</topic><topic>Reproduction</topic><topic>Thermal degradation</topic><topic>thermal kinetics</topic><topic>thermal properties</topic><topic>thermogravimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Arjun</creatorcontrib><creatorcontrib>Soni, P. K.</creatorcontrib><creatorcontrib>Shekharam, T.</creatorcontrib><creatorcontrib>Srivastava, Alok</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Arjun</au><au>Soni, P. K.</au><au>Shekharam, T.</au><au>Srivastava, Alok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A study on thermal behavior of a poly(VDF-CTFE) copolymers binder for high energy materials</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2013-02-05</date><risdate>2013</risdate><volume>127</volume><issue>3</issue><spage>1751</spage><epage>1757</epage><pages>1751-1757</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>This article describes a study on thermal behavior of poly(vinylidene fluoride‐chlorotrifluoroetheylene) [poly(VDF‐CTFE)] copolymers as polymeric binders of specific interest for high energy materials (HEMs) composites by thermal analytical techniques. The non‐isothermal thermogravimetry (TG) for poly (VDF‐CTFE) copolymers was recorded in air and N2 atmospheres. The results of TG thermograms show that poly(VDF‐CTFE) copolymers get degrade at lower temperature when in air than in N2 atmosphere. In the derivative curve, there was single maximum degradation peak (Tmax) indicating one‐stage degradation of poly(VDF‐CTFE) copolymers for all the samples. The other thermal properties such as glass transition temperature (Tg) and degradation temperature (Td) for poly(VDF‐CTFE) copolymers were measured by employing differential scanning calorimeter (DSC) technique. The kinetic parameters related to thermal degradation of poly(VDF‐CTFE) copolymers were investigated through non‐isothermal Kissinger kinetic method using DSC method. The activation energies for thermal degradation of poly(VDF‐CTFE) copolymers were found in a range of 218–278 kJ/mol. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.37780</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2013-02, Vol.127 (3), p.1751-1757
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_miscellaneous_1439782324
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Binders
Chemical reactions and properties
Copolymers
Degradation
Derivatives
differential scanning calorimeter
Differential scanning calorimetry
Exact sciences and technology
fluoropolymer
Materials science
Mathematical analysis
Organic polymers
Physicochemistry of polymers
Polymers
Reproduction
Thermal degradation
thermal kinetics
thermal properties
thermogravimetry
title A study on thermal behavior of a poly(VDF-CTFE) copolymers binder for high energy materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20study%20on%20thermal%20behavior%20of%20a%20poly(VDF-CTFE)%20copolymers%20binder%20for%20high%20energy%20materials&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Singh,%20Arjun&rft.date=2013-02-05&rft.volume=127&rft.issue=3&rft.spage=1751&rft.epage=1757&rft.pages=1751-1757&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.37780&rft_dat=%3Cproquest_cross%3E2805390091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1125526811&rft_id=info:pmid/&rfr_iscdi=true