Anisotropic Elliptic PDEs for Feature Classification

The extraction and classification of multitype (point, curve, patch) features on manifolds are extremely challenging, due to the lack of rigorous definition for diverse feature forms. This paper seeks a novel solution of multitype features in a mathematically rigorous way and proposes an efficient m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2013-10, Vol.19 (10), p.1606-1618
Hauptverfasser: Wang, Shengfa, Hou, Tingbo, Li, Shuai, Su, Zhixun, Qin, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1618
container_issue 10
container_start_page 1606
container_title IEEE transactions on visualization and computer graphics
container_volume 19
creator Wang, Shengfa
Hou, Tingbo
Li, Shuai
Su, Zhixun
Qin, Hong
description The extraction and classification of multitype (point, curve, patch) features on manifolds are extremely challenging, due to the lack of rigorous definition for diverse feature forms. This paper seeks a novel solution of multitype features in a mathematically rigorous way and proposes an efficient method for feature classification on manifolds. We tackle this challenge by exploring a quasi-harmonic field (QHF) generated by elliptic PDEs, which is the stable state of heat diffusion governed by anisotropic diffusion tensor. Diffusion tensor locally encodes shape geometry and controls velocity and direction of the diffusion process. The global QHF weaves points into smooth regions separated by ridges and has superior performance in combating noise/holes. Our method's originality is highlighted by the integration of locally defined diffusion tensor and globally defined elliptic PDEs in an anisotropic manner. At the computational front, the heat diffusion PDE becomes a linear system with Dirichlet condition at heat sources (called seeds). Our new algorithms afford automatic seed selection, enhanced by a fast update procedure in a high-dimensional space. By employing diffusion probability, our method can handle both manufactured parts and organic objects. Various experiments demonstrate the flexibility and high performance of our method.
doi_str_mv 10.1109/TVCG.2013.60
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439778613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6472239</ieee_id><sourcerecordid>1439742224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-84d836d950b5e9f7615855a78cf68262ba3987be42c37b43692cf3ae8b981b2f3</originalsourceid><addsrcrecordid>eNqN0U1Lw0AQBuBFFFurN2-CBLx4MHU_JvtxLLGtQkEP1WvYpBvYkiZxNzn4793Q2oOnHoYd2IdhhhehW4KnhGD1vP5Kl1OKCZtyfIbGRAGJcYL5eeixEDHllI_QlfdbjAmAVJdoRJmiSgIbI5jV1jeda1pbRPOqsm0Xmo-XuY_KxkULo7vemSittPe2tIXubFNfo4tSV97cHN4J-lzM1-lrvHpfvqWzVVwATrpYwkYyvlEJzhOjSsFJIpNEC1mUXIa1cs2UFLkBWjCRA-OKFiXTRuZKkpyWbIIe93Nb13z3xnfZzvrCVJWuTdP7jABTQkhO2GkUKKVwAiWKAQDGgT78o9umd3W4OSiaQCgxqKe9KlzjvTNl1jq70-4nIzgbMsqGjLIho4wP_P4wtM93ZnPEf6EEcLcH1hhz_OYgaCDsF8TDkRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1425442570</pqid></control><display><type>article</type><title>Anisotropic Elliptic PDEs for Feature Classification</title><source>IEEE Xplore</source><creator>Wang, Shengfa ; Hou, Tingbo ; Li, Shuai ; Su, Zhixun ; Qin, Hong</creator><creatorcontrib>Wang, Shengfa ; Hou, Tingbo ; Li, Shuai ; Su, Zhixun ; Qin, Hong</creatorcontrib><description>The extraction and classification of multitype (point, curve, patch) features on manifolds are extremely challenging, due to the lack of rigorous definition for diverse feature forms. This paper seeks a novel solution of multitype features in a mathematically rigorous way and proposes an efficient method for feature classification on manifolds. We tackle this challenge by exploring a quasi-harmonic field (QHF) generated by elliptic PDEs, which is the stable state of heat diffusion governed by anisotropic diffusion tensor. Diffusion tensor locally encodes shape geometry and controls velocity and direction of the diffusion process. The global QHF weaves points into smooth regions separated by ridges and has superior performance in combating noise/holes. Our method's originality is highlighted by the integration of locally defined diffusion tensor and globally defined elliptic PDEs in an anisotropic manner. At the computational front, the heat diffusion PDE becomes a linear system with Dirichlet condition at heat sources (called seeds). Our new algorithms afford automatic seed selection, enhanced by a fast update procedure in a high-dimensional space. By employing diffusion probability, our method can handle both manufactured parts and organic objects. Various experiments demonstrate the flexibility and high performance of our method.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2013.60</identifier><identifier>PMID: 23929843</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Anisotropy ; Classification ; Diffusion ; Diffusion tensor ; Dirichlet problem ; Eigenvalues and eigenfunctions ; elliptic PDE ; feature classification ; Feature extraction ; Heating ; Manifolds ; Mathematical analysis ; Noise ; Noise measurement ; Partial differential equations ; quasi-harmonic field ; Shape ; Studies ; Tensile stress ; Tensors</subject><ispartof>IEEE transactions on visualization and computer graphics, 2013-10, Vol.19 (10), p.1606-1618</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-84d836d950b5e9f7615855a78cf68262ba3987be42c37b43692cf3ae8b981b2f3</citedby><cites>FETCH-LOGICAL-c405t-84d836d950b5e9f7615855a78cf68262ba3987be42c37b43692cf3ae8b981b2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6472239$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6472239$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23929843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Shengfa</creatorcontrib><creatorcontrib>Hou, Tingbo</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Su, Zhixun</creatorcontrib><creatorcontrib>Qin, Hong</creatorcontrib><title>Anisotropic Elliptic PDEs for Feature Classification</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>The extraction and classification of multitype (point, curve, patch) features on manifolds are extremely challenging, due to the lack of rigorous definition for diverse feature forms. This paper seeks a novel solution of multitype features in a mathematically rigorous way and proposes an efficient method for feature classification on manifolds. We tackle this challenge by exploring a quasi-harmonic field (QHF) generated by elliptic PDEs, which is the stable state of heat diffusion governed by anisotropic diffusion tensor. Diffusion tensor locally encodes shape geometry and controls velocity and direction of the diffusion process. The global QHF weaves points into smooth regions separated by ridges and has superior performance in combating noise/holes. Our method's originality is highlighted by the integration of locally defined diffusion tensor and globally defined elliptic PDEs in an anisotropic manner. At the computational front, the heat diffusion PDE becomes a linear system with Dirichlet condition at heat sources (called seeds). Our new algorithms afford automatic seed selection, enhanced by a fast update procedure in a high-dimensional space. By employing diffusion probability, our method can handle both manufactured parts and organic objects. Various experiments demonstrate the flexibility and high performance of our method.</description><subject>Anisotropy</subject><subject>Classification</subject><subject>Diffusion</subject><subject>Diffusion tensor</subject><subject>Dirichlet problem</subject><subject>Eigenvalues and eigenfunctions</subject><subject>elliptic PDE</subject><subject>feature classification</subject><subject>Feature extraction</subject><subject>Heating</subject><subject>Manifolds</subject><subject>Mathematical analysis</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Partial differential equations</subject><subject>quasi-harmonic field</subject><subject>Shape</subject><subject>Studies</subject><subject>Tensile stress</subject><subject>Tensors</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0U1Lw0AQBuBFFFurN2-CBLx4MHU_JvtxLLGtQkEP1WvYpBvYkiZxNzn4793Q2oOnHoYd2IdhhhehW4KnhGD1vP5Kl1OKCZtyfIbGRAGJcYL5eeixEDHllI_QlfdbjAmAVJdoRJmiSgIbI5jV1jeda1pbRPOqsm0Xmo-XuY_KxkULo7vemSittPe2tIXubFNfo4tSV97cHN4J-lzM1-lrvHpfvqWzVVwATrpYwkYyvlEJzhOjSsFJIpNEC1mUXIa1cs2UFLkBWjCRA-OKFiXTRuZKkpyWbIIe93Nb13z3xnfZzvrCVJWuTdP7jABTQkhO2GkUKKVwAiWKAQDGgT78o9umd3W4OSiaQCgxqKe9KlzjvTNl1jq70-4nIzgbMsqGjLIho4wP_P4wtM93ZnPEf6EEcLcH1hhz_OYgaCDsF8TDkRI</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Wang, Shengfa</creator><creator>Hou, Tingbo</creator><creator>Li, Shuai</creator><creator>Su, Zhixun</creator><creator>Qin, Hong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20131001</creationdate><title>Anisotropic Elliptic PDEs for Feature Classification</title><author>Wang, Shengfa ; Hou, Tingbo ; Li, Shuai ; Su, Zhixun ; Qin, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-84d836d950b5e9f7615855a78cf68262ba3987be42c37b43692cf3ae8b981b2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anisotropy</topic><topic>Classification</topic><topic>Diffusion</topic><topic>Diffusion tensor</topic><topic>Dirichlet problem</topic><topic>Eigenvalues and eigenfunctions</topic><topic>elliptic PDE</topic><topic>feature classification</topic><topic>Feature extraction</topic><topic>Heating</topic><topic>Manifolds</topic><topic>Mathematical analysis</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Partial differential equations</topic><topic>quasi-harmonic field</topic><topic>Shape</topic><topic>Studies</topic><topic>Tensile stress</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shengfa</creatorcontrib><creatorcontrib>Hou, Tingbo</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Su, Zhixun</creatorcontrib><creatorcontrib>Qin, Hong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Shengfa</au><au>Hou, Tingbo</au><au>Li, Shuai</au><au>Su, Zhixun</au><au>Qin, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic Elliptic PDEs for Feature Classification</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>19</volume><issue>10</issue><spage>1606</spage><epage>1618</epage><pages>1606-1618</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>The extraction and classification of multitype (point, curve, patch) features on manifolds are extremely challenging, due to the lack of rigorous definition for diverse feature forms. This paper seeks a novel solution of multitype features in a mathematically rigorous way and proposes an efficient method for feature classification on manifolds. We tackle this challenge by exploring a quasi-harmonic field (QHF) generated by elliptic PDEs, which is the stable state of heat diffusion governed by anisotropic diffusion tensor. Diffusion tensor locally encodes shape geometry and controls velocity and direction of the diffusion process. The global QHF weaves points into smooth regions separated by ridges and has superior performance in combating noise/holes. Our method's originality is highlighted by the integration of locally defined diffusion tensor and globally defined elliptic PDEs in an anisotropic manner. At the computational front, the heat diffusion PDE becomes a linear system with Dirichlet condition at heat sources (called seeds). Our new algorithms afford automatic seed selection, enhanced by a fast update procedure in a high-dimensional space. By employing diffusion probability, our method can handle both manufactured parts and organic objects. Various experiments demonstrate the flexibility and high performance of our method.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23929843</pmid><doi>10.1109/TVCG.2013.60</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2013-10, Vol.19 (10), p.1606-1618
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_miscellaneous_1439778613
source IEEE Xplore
subjects Anisotropy
Classification
Diffusion
Diffusion tensor
Dirichlet problem
Eigenvalues and eigenfunctions
elliptic PDE
feature classification
Feature extraction
Heating
Manifolds
Mathematical analysis
Noise
Noise measurement
Partial differential equations
quasi-harmonic field
Shape
Studies
Tensile stress
Tensors
title Anisotropic Elliptic PDEs for Feature Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20Elliptic%20PDEs%20for%20Feature%20Classification&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Wang,%20Shengfa&rft.date=2013-10-01&rft.volume=19&rft.issue=10&rft.spage=1606&rft.epage=1618&rft.pages=1606-1618&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2013.60&rft_dat=%3Cproquest_RIE%3E1439742224%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1425442570&rft_id=info:pmid/23929843&rft_ieee_id=6472239&rfr_iscdi=true