Theoretical Study of Phenol Adsorption on Pristine, Ga-Doped, and Pd-Decorated (6,0) Zigzag Single-Walled Boron Phosphide Nanotubes

Phenol adsorption on the external surface of H-capped pristine, Ga-doped, and Pd-decorated (6,0) zigzag boron phosphide nanotubes (BPNTs) was studied by using density functional theory (DFT) calculations. The results indicate that the hydroxyl group of phenol prefers to attach to the Ga and Pd sites...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cluster science 2013-03, Vol.24 (1), p.49-60
Hauptverfasser: Peyghan, Ali Ahmadi, Baei, Mohammad T., Moghimi, Masoumeh, Hashemian, Saeedeh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 1
container_start_page 49
container_title Journal of cluster science
container_volume 24
creator Peyghan, Ali Ahmadi
Baei, Mohammad T.
Moghimi, Masoumeh
Hashemian, Saeedeh
description Phenol adsorption on the external surface of H-capped pristine, Ga-doped, and Pd-decorated (6,0) zigzag boron phosphide nanotubes (BPNTs) was studied by using density functional theory (DFT) calculations. The results indicate that the hydroxyl group of phenol prefers to attach to the Ga and Pd sites and thus the Ga-doped and Pd-decorated (6,0) can be used for removing phenol. The calculated adsorption energy of phenol on the Ga-doped and Pd-decorated (6,0) BPNTs are −0.724 and −420 eV, respectively and about 0.28 and 0.27 electrons are transferred from phenol to the nanotubes. In addition, the value for the fractional number of electrons transferred is negative, indicating that phenol act as an electron donor. Frontier molecular orbital theory (FMO) and structural analyses show that the high polar surface bonds and large bond lengths of the Ga-doped and Pd-decorated (6,0) BPNT surfaces increase the adsorption of phenol on the nanotube models. This study can be useful in removing phenol and development of many catalytic processes for formation of a variety of useful compounds.
doi_str_mv 10.1007/s10876-012-0513-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439774493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918277985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-f741a031751e619ad4b2c57bf729c11e0d7d0fd101fd00bdc925091cf42b34f53</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhgdRsNb-AO8C3lTY6DlJZpNc1larUOxCK4I3IZOP3ZTpZExmLtrb_nFnWUEQhAM5kOd9OPA2zRuE9wggP1QEJdcUkFFokVP1rDnCVjKq1Jo9X3YQQCWT6mXzqtY7ANCK86Pm6XYXcglTcrYnN9PsH0iOZLMLQ-7Jma-5jFPKA1lmU1Kd0hBW5NLSizwGvyJ28GTj6UVwudgpeHK6XsE78jNtH-2W3KRh2wf6w_b98vUxl71ll-u4Sz6Qb3bI09yF-rp5EW1fw8mf97j5_vnT7fkXenV9-fX87Io6LvREoxRogaNsMaxRWy865lrZRcm0QwzgpYfoETB6gM47zVrQ6KJgHRex5cfN6cE7lvxrDnUy96m60Pd2CHmuBgXXUgqh-YK-_Qe9y3MZlusM06iYlFrthXigXMm1lhDNWNK9LQ8GwexrMYdazFKL2ddi1JJhh0xd2GEbyl_z_0O_Achxjn4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918277985</pqid></control><display><type>article</type><title>Theoretical Study of Phenol Adsorption on Pristine, Ga-Doped, and Pd-Decorated (6,0) Zigzag Single-Walled Boron Phosphide Nanotubes</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Peyghan, Ali Ahmadi ; Baei, Mohammad T. ; Moghimi, Masoumeh ; Hashemian, Saeedeh</creator><creatorcontrib>Peyghan, Ali Ahmadi ; Baei, Mohammad T. ; Moghimi, Masoumeh ; Hashemian, Saeedeh</creatorcontrib><description>Phenol adsorption on the external surface of H-capped pristine, Ga-doped, and Pd-decorated (6,0) zigzag boron phosphide nanotubes (BPNTs) was studied by using density functional theory (DFT) calculations. The results indicate that the hydroxyl group of phenol prefers to attach to the Ga and Pd sites and thus the Ga-doped and Pd-decorated (6,0) can be used for removing phenol. The calculated adsorption energy of phenol on the Ga-doped and Pd-decorated (6,0) BPNTs are −0.724 and −420 eV, respectively and about 0.28 and 0.27 electrons are transferred from phenol to the nanotubes. In addition, the value for the fractional number of electrons transferred is negative, indicating that phenol act as an electron donor. Frontier molecular orbital theory (FMO) and structural analyses show that the high polar surface bonds and large bond lengths of the Ga-doped and Pd-decorated (6,0) BPNT surfaces increase the adsorption of phenol on the nanotube models. This study can be useful in removing phenol and development of many catalytic processes for formation of a variety of useful compounds.</description><identifier>ISSN: 1040-7278</identifier><identifier>EISSN: 1572-8862</identifier><identifier>DOI: 10.1007/s10876-012-0513-8</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Adsorption ; Boron ; Boron phosphides ; Carbon ; Catalysis ; Chemistry ; Chemistry and Materials Science ; Decoration ; Density functional theory ; Electrons ; Energy ; Gallium ; Herbicides ; Hydrogenation ; Hydroxyl groups ; Inorganic Chemistry ; Investigations ; Mathematical models ; Molecular orbitals ; Nanochemistry ; Nanotubes ; Optimization ; Original Paper ; Palladium ; Pharmaceuticals ; Phenol ; Phenols ; Physical Chemistry ; Surface chemistry</subject><ispartof>Journal of cluster science, 2013-03, Vol.24 (1), p.49-60</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>Springer Science+Business Media, LLC 2012.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-f741a031751e619ad4b2c57bf729c11e0d7d0fd101fd00bdc925091cf42b34f53</citedby><cites>FETCH-LOGICAL-c349t-f741a031751e619ad4b2c57bf729c11e0d7d0fd101fd00bdc925091cf42b34f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10876-012-0513-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918277985?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,33722,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Peyghan, Ali Ahmadi</creatorcontrib><creatorcontrib>Baei, Mohammad T.</creatorcontrib><creatorcontrib>Moghimi, Masoumeh</creatorcontrib><creatorcontrib>Hashemian, Saeedeh</creatorcontrib><title>Theoretical Study of Phenol Adsorption on Pristine, Ga-Doped, and Pd-Decorated (6,0) Zigzag Single-Walled Boron Phosphide Nanotubes</title><title>Journal of cluster science</title><addtitle>J Clust Sci</addtitle><description>Phenol adsorption on the external surface of H-capped pristine, Ga-doped, and Pd-decorated (6,0) zigzag boron phosphide nanotubes (BPNTs) was studied by using density functional theory (DFT) calculations. The results indicate that the hydroxyl group of phenol prefers to attach to the Ga and Pd sites and thus the Ga-doped and Pd-decorated (6,0) can be used for removing phenol. The calculated adsorption energy of phenol on the Ga-doped and Pd-decorated (6,0) BPNTs are −0.724 and −420 eV, respectively and about 0.28 and 0.27 electrons are transferred from phenol to the nanotubes. In addition, the value for the fractional number of electrons transferred is negative, indicating that phenol act as an electron donor. Frontier molecular orbital theory (FMO) and structural analyses show that the high polar surface bonds and large bond lengths of the Ga-doped and Pd-decorated (6,0) BPNT surfaces increase the adsorption of phenol on the nanotube models. This study can be useful in removing phenol and development of many catalytic processes for formation of a variety of useful compounds.</description><subject>Adsorption</subject><subject>Boron</subject><subject>Boron phosphides</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Decoration</subject><subject>Density functional theory</subject><subject>Electrons</subject><subject>Energy</subject><subject>Gallium</subject><subject>Herbicides</subject><subject>Hydrogenation</subject><subject>Hydroxyl groups</subject><subject>Inorganic Chemistry</subject><subject>Investigations</subject><subject>Mathematical models</subject><subject>Molecular orbitals</subject><subject>Nanochemistry</subject><subject>Nanotubes</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Palladium</subject><subject>Pharmaceuticals</subject><subject>Phenol</subject><subject>Phenols</subject><subject>Physical Chemistry</subject><subject>Surface chemistry</subject><issn>1040-7278</issn><issn>1572-8862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kV1rFDEUhgdRsNb-AO8C3lTY6DlJZpNc1larUOxCK4I3IZOP3ZTpZExmLtrb_nFnWUEQhAM5kOd9OPA2zRuE9wggP1QEJdcUkFFokVP1rDnCVjKq1Jo9X3YQQCWT6mXzqtY7ANCK86Pm6XYXcglTcrYnN9PsH0iOZLMLQ-7Jma-5jFPKA1lmU1Kd0hBW5NLSizwGvyJ28GTj6UVwudgpeHK6XsE78jNtH-2W3KRh2wf6w_b98vUxl71ll-u4Sz6Qb3bI09yF-rp5EW1fw8mf97j5_vnT7fkXenV9-fX87Io6LvREoxRogaNsMaxRWy865lrZRcm0QwzgpYfoETB6gM47zVrQ6KJgHRex5cfN6cE7lvxrDnUy96m60Pd2CHmuBgXXUgqh-YK-_Qe9y3MZlusM06iYlFrthXigXMm1lhDNWNK9LQ8GwexrMYdazFKL2ddi1JJhh0xd2GEbyl_z_0O_Achxjn4</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Peyghan, Ali Ahmadi</creator><creator>Baei, Mohammad T.</creator><creator>Moghimi, Masoumeh</creator><creator>Hashemian, Saeedeh</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130301</creationdate><title>Theoretical Study of Phenol Adsorption on Pristine, Ga-Doped, and Pd-Decorated (6,0) Zigzag Single-Walled Boron Phosphide Nanotubes</title><author>Peyghan, Ali Ahmadi ; Baei, Mohammad T. ; Moghimi, Masoumeh ; Hashemian, Saeedeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-f741a031751e619ad4b2c57bf729c11e0d7d0fd101fd00bdc925091cf42b34f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorption</topic><topic>Boron</topic><topic>Boron phosphides</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Decoration</topic><topic>Density functional theory</topic><topic>Electrons</topic><topic>Energy</topic><topic>Gallium</topic><topic>Herbicides</topic><topic>Hydrogenation</topic><topic>Hydroxyl groups</topic><topic>Inorganic Chemistry</topic><topic>Investigations</topic><topic>Mathematical models</topic><topic>Molecular orbitals</topic><topic>Nanochemistry</topic><topic>Nanotubes</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Palladium</topic><topic>Pharmaceuticals</topic><topic>Phenol</topic><topic>Phenols</topic><topic>Physical Chemistry</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peyghan, Ali Ahmadi</creatorcontrib><creatorcontrib>Baei, Mohammad T.</creatorcontrib><creatorcontrib>Moghimi, Masoumeh</creatorcontrib><creatorcontrib>Hashemian, Saeedeh</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of cluster science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peyghan, Ali Ahmadi</au><au>Baei, Mohammad T.</au><au>Moghimi, Masoumeh</au><au>Hashemian, Saeedeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical Study of Phenol Adsorption on Pristine, Ga-Doped, and Pd-Decorated (6,0) Zigzag Single-Walled Boron Phosphide Nanotubes</atitle><jtitle>Journal of cluster science</jtitle><stitle>J Clust Sci</stitle><date>2013-03-01</date><risdate>2013</risdate><volume>24</volume><issue>1</issue><spage>49</spage><epage>60</epage><pages>49-60</pages><issn>1040-7278</issn><eissn>1572-8862</eissn><abstract>Phenol adsorption on the external surface of H-capped pristine, Ga-doped, and Pd-decorated (6,0) zigzag boron phosphide nanotubes (BPNTs) was studied by using density functional theory (DFT) calculations. The results indicate that the hydroxyl group of phenol prefers to attach to the Ga and Pd sites and thus the Ga-doped and Pd-decorated (6,0) can be used for removing phenol. The calculated adsorption energy of phenol on the Ga-doped and Pd-decorated (6,0) BPNTs are −0.724 and −420 eV, respectively and about 0.28 and 0.27 electrons are transferred from phenol to the nanotubes. In addition, the value for the fractional number of electrons transferred is negative, indicating that phenol act as an electron donor. Frontier molecular orbital theory (FMO) and structural analyses show that the high polar surface bonds and large bond lengths of the Ga-doped and Pd-decorated (6,0) BPNT surfaces increase the adsorption of phenol on the nanotube models. This study can be useful in removing phenol and development of many catalytic processes for formation of a variety of useful compounds.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10876-012-0513-8</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1040-7278
ispartof Journal of cluster science, 2013-03, Vol.24 (1), p.49-60
issn 1040-7278
1572-8862
language eng
recordid cdi_proquest_miscellaneous_1439774493
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Adsorption
Boron
Boron phosphides
Carbon
Catalysis
Chemistry
Chemistry and Materials Science
Decoration
Density functional theory
Electrons
Energy
Gallium
Herbicides
Hydrogenation
Hydroxyl groups
Inorganic Chemistry
Investigations
Mathematical models
Molecular orbitals
Nanochemistry
Nanotubes
Optimization
Original Paper
Palladium
Pharmaceuticals
Phenol
Phenols
Physical Chemistry
Surface chemistry
title Theoretical Study of Phenol Adsorption on Pristine, Ga-Doped, and Pd-Decorated (6,0) Zigzag Single-Walled Boron Phosphide Nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20Study%20of%20Phenol%20Adsorption%20on%20Pristine,%20Ga-Doped,%20and%20Pd-Decorated%20(6,0)%20Zigzag%20Single-Walled%20Boron%20Phosphide%20Nanotubes&rft.jtitle=Journal%20of%20cluster%20science&rft.au=Peyghan,%20Ali%20Ahmadi&rft.date=2013-03-01&rft.volume=24&rft.issue=1&rft.spage=49&rft.epage=60&rft.pages=49-60&rft.issn=1040-7278&rft.eissn=1572-8862&rft_id=info:doi/10.1007/s10876-012-0513-8&rft_dat=%3Cproquest_cross%3E2918277985%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918277985&rft_id=info:pmid/&rfr_iscdi=true