Using Computing Intelligence Techniques to Estimate Software Effort

In the IT industry, precisely estimate the effort of each software project the development cost and schedule are count for much to the software company. So precisely estimation of man power seems to be getting more important. In the past time, the IT companies estimate the work effort of man power b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Software Engineering & Applications 2013-01, Vol.4 (1), p.43-53
Hauptverfasser: Lin, Jin-Cherng, Lin, Yueh-Ting, Tzeng, Han-Yuan, Wang, Yan-Chin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 53
container_issue 1
container_start_page 43
container_title International Journal of Software Engineering & Applications
container_volume 4
creator Lin, Jin-Cherng
Lin, Yueh-Ting
Tzeng, Han-Yuan
Wang, Yan-Chin
description In the IT industry, precisely estimate the effort of each software project the development cost and schedule are count for much to the software company. So precisely estimation of man power seems to be getting more important. In the past time, the IT companies estimate the work effort of man power by human experts, using statistics method. However, the outcomes are always unsatisfying the management level. Recently it becomes an interesting topic if computing intelligence techniques can do better in this field. This research uses some computing intelligence techniques, such as Pearson product-moment correlation coefficient method and one-way ANOVA method to select key factors, and K-Means clustering algorithm to do project clustering, to estimate the software project effort. The experimental result show that using computing intelligence techniques to estimate the software project effort can get more precise and more effective estimation than using traditional human experts did.
doi_str_mv 10.5121/ijsea.2013.4104
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439769550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439769550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1144-950e5e7dbfbd8830d673381dea11c5bcf5072b354551a8015b26cccd34f057453</originalsourceid><addsrcrecordid>eNotkD1PwzAURS0EElXpzJqRJa2f7ZePEUUFKlVioJ0tx7GLURsX2xHi35O0TO8OV1fnHUIegS4RGKzcVzRqySjwpQAqbsiM1iXmNYXq9pKLnDEG92QRo2spxQoKURcz0uyj6w9Z40_nIU1p0ydzPLqD6bXJdkZ_9u57MDFLPlvH5E4qmezD2_SjgsnW1vqQHsidVcdoFv93TvYv613zlm_fXzfN8zbXAELkNVKDpuxa23ZVxWlXlJxX0BkFoLHVFmnJWo4CEVRFAVtWaK07LizFUiCfk6fr7jn4iSnJk4t6pFW98UOUIPj4aI1Ix-rqWtXBxxiMlecwsodfCVROxuTFmJyMyckY_wMnwV7q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439769550</pqid></control><display><type>article</type><title>Using Computing Intelligence Techniques to Estimate Software Effort</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lin, Jin-Cherng ; Lin, Yueh-Ting ; Tzeng, Han-Yuan ; Wang, Yan-Chin</creator><creatorcontrib>Lin, Jin-Cherng ; Lin, Yueh-Ting ; Tzeng, Han-Yuan ; Wang, Yan-Chin</creatorcontrib><description>In the IT industry, precisely estimate the effort of each software project the development cost and schedule are count for much to the software company. So precisely estimation of man power seems to be getting more important. In the past time, the IT companies estimate the work effort of man power by human experts, using statistics method. However, the outcomes are always unsatisfying the management level. Recently it becomes an interesting topic if computing intelligence techniques can do better in this field. This research uses some computing intelligence techniques, such as Pearson product-moment correlation coefficient method and one-way ANOVA method to select key factors, and K-Means clustering algorithm to do project clustering, to estimate the software project effort. The experimental result show that using computing intelligence techniques to estimate the software project effort can get more precise and more effective estimation than using traditional human experts did.</description><identifier>ISSN: 0976-2221</identifier><identifier>EISSN: 0975-9018</identifier><identifier>DOI: 10.5121/ijsea.2013.4104</identifier><language>eng</language><subject>Analysis of variance ; Computation ; Computer programs ; Estimates ; Human ; Information technology ; Intelligence ; Software</subject><ispartof>International Journal of Software Engineering &amp; Applications, 2013-01, Vol.4 (1), p.43-53</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Lin, Jin-Cherng</creatorcontrib><creatorcontrib>Lin, Yueh-Ting</creatorcontrib><creatorcontrib>Tzeng, Han-Yuan</creatorcontrib><creatorcontrib>Wang, Yan-Chin</creatorcontrib><title>Using Computing Intelligence Techniques to Estimate Software Effort</title><title>International Journal of Software Engineering &amp; Applications</title><description>In the IT industry, precisely estimate the effort of each software project the development cost and schedule are count for much to the software company. So precisely estimation of man power seems to be getting more important. In the past time, the IT companies estimate the work effort of man power by human experts, using statistics method. However, the outcomes are always unsatisfying the management level. Recently it becomes an interesting topic if computing intelligence techniques can do better in this field. This research uses some computing intelligence techniques, such as Pearson product-moment correlation coefficient method and one-way ANOVA method to select key factors, and K-Means clustering algorithm to do project clustering, to estimate the software project effort. The experimental result show that using computing intelligence techniques to estimate the software project effort can get more precise and more effective estimation than using traditional human experts did.</description><subject>Analysis of variance</subject><subject>Computation</subject><subject>Computer programs</subject><subject>Estimates</subject><subject>Human</subject><subject>Information technology</subject><subject>Intelligence</subject><subject>Software</subject><issn>0976-2221</issn><issn>0975-9018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAURS0EElXpzJqRJa2f7ZePEUUFKlVioJ0tx7GLURsX2xHi35O0TO8OV1fnHUIegS4RGKzcVzRqySjwpQAqbsiM1iXmNYXq9pKLnDEG92QRo2spxQoKURcz0uyj6w9Z40_nIU1p0ydzPLqD6bXJdkZ_9u57MDFLPlvH5E4qmezD2_SjgsnW1vqQHsidVcdoFv93TvYv613zlm_fXzfN8zbXAELkNVKDpuxa23ZVxWlXlJxX0BkFoLHVFmnJWo4CEVRFAVtWaK07LizFUiCfk6fr7jn4iSnJk4t6pFW98UOUIPj4aI1Ix-rqWtXBxxiMlecwsodfCVROxuTFmJyMyckY_wMnwV7q</recordid><startdate>20130131</startdate><enddate>20130131</enddate><creator>Lin, Jin-Cherng</creator><creator>Lin, Yueh-Ting</creator><creator>Tzeng, Han-Yuan</creator><creator>Wang, Yan-Chin</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130131</creationdate><title>Using Computing Intelligence Techniques to Estimate Software Effort</title><author>Lin, Jin-Cherng ; Lin, Yueh-Ting ; Tzeng, Han-Yuan ; Wang, Yan-Chin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1144-950e5e7dbfbd8830d673381dea11c5bcf5072b354551a8015b26cccd34f057453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis of variance</topic><topic>Computation</topic><topic>Computer programs</topic><topic>Estimates</topic><topic>Human</topic><topic>Information technology</topic><topic>Intelligence</topic><topic>Software</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin, Jin-Cherng</creatorcontrib><creatorcontrib>Lin, Yueh-Ting</creatorcontrib><creatorcontrib>Tzeng, Han-Yuan</creatorcontrib><creatorcontrib>Wang, Yan-Chin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International Journal of Software Engineering &amp; Applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Jin-Cherng</au><au>Lin, Yueh-Ting</au><au>Tzeng, Han-Yuan</au><au>Wang, Yan-Chin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Computing Intelligence Techniques to Estimate Software Effort</atitle><jtitle>International Journal of Software Engineering &amp; Applications</jtitle><date>2013-01-31</date><risdate>2013</risdate><volume>4</volume><issue>1</issue><spage>43</spage><epage>53</epage><pages>43-53</pages><issn>0976-2221</issn><eissn>0975-9018</eissn><abstract>In the IT industry, precisely estimate the effort of each software project the development cost and schedule are count for much to the software company. So precisely estimation of man power seems to be getting more important. In the past time, the IT companies estimate the work effort of man power by human experts, using statistics method. However, the outcomes are always unsatisfying the management level. Recently it becomes an interesting topic if computing intelligence techniques can do better in this field. This research uses some computing intelligence techniques, such as Pearson product-moment correlation coefficient method and one-way ANOVA method to select key factors, and K-Means clustering algorithm to do project clustering, to estimate the software project effort. The experimental result show that using computing intelligence techniques to estimate the software project effort can get more precise and more effective estimation than using traditional human experts did.</abstract><doi>10.5121/ijsea.2013.4104</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0976-2221
ispartof International Journal of Software Engineering & Applications, 2013-01, Vol.4 (1), p.43-53
issn 0976-2221
0975-9018
language eng
recordid cdi_proquest_miscellaneous_1439769550
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Analysis of variance
Computation
Computer programs
Estimates
Human
Information technology
Intelligence
Software
title Using Computing Intelligence Techniques to Estimate Software Effort
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A04%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Computing%20Intelligence%20Techniques%20to%20Estimate%20Software%20Effort&rft.jtitle=International%20Journal%20of%20Software%20Engineering%20&%20Applications&rft.au=Lin,%20Jin-Cherng&rft.date=2013-01-31&rft.volume=4&rft.issue=1&rft.spage=43&rft.epage=53&rft.pages=43-53&rft.issn=0976-2221&rft.eissn=0975-9018&rft_id=info:doi/10.5121/ijsea.2013.4104&rft_dat=%3Cproquest_cross%3E1439769550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439769550&rft_id=info:pmid/&rfr_iscdi=true