Using Computing Intelligence Techniques to Estimate Software Effort
In the IT industry, precisely estimate the effort of each software project the development cost and schedule are count for much to the software company. So precisely estimation of man power seems to be getting more important. In the past time, the IT companies estimate the work effort of man power b...
Gespeichert in:
Veröffentlicht in: | International Journal of Software Engineering & Applications 2013-01, Vol.4 (1), p.43-53 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 53 |
---|---|
container_issue | 1 |
container_start_page | 43 |
container_title | International Journal of Software Engineering & Applications |
container_volume | 4 |
creator | Lin, Jin-Cherng Lin, Yueh-Ting Tzeng, Han-Yuan Wang, Yan-Chin |
description | In the IT industry, precisely estimate the effort of each software project the development cost and schedule are count for much to the software company. So precisely estimation of man power seems to be getting more important. In the past time, the IT companies estimate the work effort of man power by human experts, using statistics method. However, the outcomes are always unsatisfying the management level. Recently it becomes an interesting topic if computing intelligence techniques can do better in this field. This research uses some computing intelligence techniques, such as Pearson product-moment correlation coefficient method and one-way ANOVA method to select key factors, and K-Means clustering algorithm to do project clustering, to estimate the software project effort. The experimental result show that using computing intelligence techniques to estimate the software project effort can get more precise and more effective estimation than using traditional human experts did. |
doi_str_mv | 10.5121/ijsea.2013.4104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439769550</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439769550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1144-950e5e7dbfbd8830d673381dea11c5bcf5072b354551a8015b26cccd34f057453</originalsourceid><addsrcrecordid>eNotkD1PwzAURS0EElXpzJqRJa2f7ZePEUUFKlVioJ0tx7GLURsX2xHi35O0TO8OV1fnHUIegS4RGKzcVzRqySjwpQAqbsiM1iXmNYXq9pKLnDEG92QRo2spxQoKURcz0uyj6w9Z40_nIU1p0ydzPLqD6bXJdkZ_9u57MDFLPlvH5E4qmezD2_SjgsnW1vqQHsidVcdoFv93TvYv613zlm_fXzfN8zbXAELkNVKDpuxa23ZVxWlXlJxX0BkFoLHVFmnJWo4CEVRFAVtWaK07LizFUiCfk6fr7jn4iSnJk4t6pFW98UOUIPj4aI1Ix-rqWtXBxxiMlecwsodfCVROxuTFmJyMyckY_wMnwV7q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439769550</pqid></control><display><type>article</type><title>Using Computing Intelligence Techniques to Estimate Software Effort</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lin, Jin-Cherng ; Lin, Yueh-Ting ; Tzeng, Han-Yuan ; Wang, Yan-Chin</creator><creatorcontrib>Lin, Jin-Cherng ; Lin, Yueh-Ting ; Tzeng, Han-Yuan ; Wang, Yan-Chin</creatorcontrib><description>In the IT industry, precisely estimate the effort of each software project the development cost and schedule are count for much to the software company. So precisely estimation of man power seems to be getting more important. In the past time, the IT companies estimate the work effort of man power by human experts, using statistics method. However, the outcomes are always unsatisfying the management level. Recently it becomes an interesting topic if computing intelligence techniques can do better in this field. This research uses some computing intelligence techniques, such as Pearson product-moment correlation coefficient method and one-way ANOVA method to select key factors, and K-Means clustering algorithm to do project clustering, to estimate the software project effort. The experimental result show that using computing intelligence techniques to estimate the software project effort can get more precise and more effective estimation than using traditional human experts did.</description><identifier>ISSN: 0976-2221</identifier><identifier>EISSN: 0975-9018</identifier><identifier>DOI: 10.5121/ijsea.2013.4104</identifier><language>eng</language><subject>Analysis of variance ; Computation ; Computer programs ; Estimates ; Human ; Information technology ; Intelligence ; Software</subject><ispartof>International Journal of Software Engineering & Applications, 2013-01, Vol.4 (1), p.43-53</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Lin, Jin-Cherng</creatorcontrib><creatorcontrib>Lin, Yueh-Ting</creatorcontrib><creatorcontrib>Tzeng, Han-Yuan</creatorcontrib><creatorcontrib>Wang, Yan-Chin</creatorcontrib><title>Using Computing Intelligence Techniques to Estimate Software Effort</title><title>International Journal of Software Engineering & Applications</title><description>In the IT industry, precisely estimate the effort of each software project the development cost and schedule are count for much to the software company. So precisely estimation of man power seems to be getting more important. In the past time, the IT companies estimate the work effort of man power by human experts, using statistics method. However, the outcomes are always unsatisfying the management level. Recently it becomes an interesting topic if computing intelligence techniques can do better in this field. This research uses some computing intelligence techniques, such as Pearson product-moment correlation coefficient method and one-way ANOVA method to select key factors, and K-Means clustering algorithm to do project clustering, to estimate the software project effort. The experimental result show that using computing intelligence techniques to estimate the software project effort can get more precise and more effective estimation than using traditional human experts did.</description><subject>Analysis of variance</subject><subject>Computation</subject><subject>Computer programs</subject><subject>Estimates</subject><subject>Human</subject><subject>Information technology</subject><subject>Intelligence</subject><subject>Software</subject><issn>0976-2221</issn><issn>0975-9018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAURS0EElXpzJqRJa2f7ZePEUUFKlVioJ0tx7GLURsX2xHi35O0TO8OV1fnHUIegS4RGKzcVzRqySjwpQAqbsiM1iXmNYXq9pKLnDEG92QRo2spxQoKURcz0uyj6w9Z40_nIU1p0ydzPLqD6bXJdkZ_9u57MDFLPlvH5E4qmezD2_SjgsnW1vqQHsidVcdoFv93TvYv613zlm_fXzfN8zbXAELkNVKDpuxa23ZVxWlXlJxX0BkFoLHVFmnJWo4CEVRFAVtWaK07LizFUiCfk6fr7jn4iSnJk4t6pFW98UOUIPj4aI1Ix-rqWtXBxxiMlecwsodfCVROxuTFmJyMyckY_wMnwV7q</recordid><startdate>20130131</startdate><enddate>20130131</enddate><creator>Lin, Jin-Cherng</creator><creator>Lin, Yueh-Ting</creator><creator>Tzeng, Han-Yuan</creator><creator>Wang, Yan-Chin</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130131</creationdate><title>Using Computing Intelligence Techniques to Estimate Software Effort</title><author>Lin, Jin-Cherng ; Lin, Yueh-Ting ; Tzeng, Han-Yuan ; Wang, Yan-Chin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1144-950e5e7dbfbd8830d673381dea11c5bcf5072b354551a8015b26cccd34f057453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis of variance</topic><topic>Computation</topic><topic>Computer programs</topic><topic>Estimates</topic><topic>Human</topic><topic>Information technology</topic><topic>Intelligence</topic><topic>Software</topic><toplevel>online_resources</toplevel><creatorcontrib>Lin, Jin-Cherng</creatorcontrib><creatorcontrib>Lin, Yueh-Ting</creatorcontrib><creatorcontrib>Tzeng, Han-Yuan</creatorcontrib><creatorcontrib>Wang, Yan-Chin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International Journal of Software Engineering & Applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Jin-Cherng</au><au>Lin, Yueh-Ting</au><au>Tzeng, Han-Yuan</au><au>Wang, Yan-Chin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Computing Intelligence Techniques to Estimate Software Effort</atitle><jtitle>International Journal of Software Engineering & Applications</jtitle><date>2013-01-31</date><risdate>2013</risdate><volume>4</volume><issue>1</issue><spage>43</spage><epage>53</epage><pages>43-53</pages><issn>0976-2221</issn><eissn>0975-9018</eissn><abstract>In the IT industry, precisely estimate the effort of each software project the development cost and schedule are count for much to the software company. So precisely estimation of man power seems to be getting more important. In the past time, the IT companies estimate the work effort of man power by human experts, using statistics method. However, the outcomes are always unsatisfying the management level. Recently it becomes an interesting topic if computing intelligence techniques can do better in this field. This research uses some computing intelligence techniques, such as Pearson product-moment correlation coefficient method and one-way ANOVA method to select key factors, and K-Means clustering algorithm to do project clustering, to estimate the software project effort. The experimental result show that using computing intelligence techniques to estimate the software project effort can get more precise and more effective estimation than using traditional human experts did.</abstract><doi>10.5121/ijsea.2013.4104</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0976-2221 |
ispartof | International Journal of Software Engineering & Applications, 2013-01, Vol.4 (1), p.43-53 |
issn | 0976-2221 0975-9018 |
language | eng |
recordid | cdi_proquest_miscellaneous_1439769550 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Analysis of variance Computation Computer programs Estimates Human Information technology Intelligence Software |
title | Using Computing Intelligence Techniques to Estimate Software Effort |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A04%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Computing%20Intelligence%20Techniques%20to%20Estimate%20Software%20Effort&rft.jtitle=International%20Journal%20of%20Software%20Engineering%20&%20Applications&rft.au=Lin,%20Jin-Cherng&rft.date=2013-01-31&rft.volume=4&rft.issue=1&rft.spage=43&rft.epage=53&rft.pages=43-53&rft.issn=0976-2221&rft.eissn=0975-9018&rft_id=info:doi/10.5121/ijsea.2013.4104&rft_dat=%3Cproquest_cross%3E1439769550%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439769550&rft_id=info:pmid/&rfr_iscdi=true |