Ontology Guided Information Extraction from Unstructured Text

In this paper, we describe an approach to populate an existing ontology with instance information present in the natural language text provided as input. An ontology is defined as an explicit conceptualization of a shared domain [18], This approach starts with a list of relevant domain ontologies cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of Web & Semantic Technology 2013-01, Vol.4 (1), p.19-36
Hauptverfasser: Anantharangachar, Raghu, Ramani, Srinivasan, S, Rajagopalan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue 1
container_start_page 19
container_title International journal of Web & Semantic Technology
container_volume 4
creator Anantharangachar, Raghu
Ramani, Srinivasan
S, Rajagopalan
description In this paper, we describe an approach to populate an existing ontology with instance information present in the natural language text provided as input. An ontology is defined as an explicit conceptualization of a shared domain [18], This approach starts with a list of relevant domain ontologies created by human experts, and techniques for identifying the most appropriate ontology to be extended with information from a given text. Then we demonstrate heuristics to extract information from the unstructured text and for adding it as structured information to the selected ontology. This identification of the relevant ontology is critical, as it is used in identifying relevant information in the text. We extract information in the form of semantic triples from the text, guided by the concepts in the ontology. We then convert the extracted information about the semantic class instances into Resource Description Framework (RDF3) and append it to the existing domain ontology. This enables us to perform more precise semantic queries over the semantic triple store thus created. We have achieved 95% accuracy of information extraction in our implementation.
doi_str_mv 10.5121/ijwest.2013.4102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439765862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439765862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1632-646be6599eb1b2b7b62cef5415c99289b5febfec86f80fee7b11e1056f3b006e3</originalsourceid><addsrcrecordid>eNotkDFPwzAQhS0EElXpzpiRJcHnxE48MKCqlEqVurSzFbtnFJTExXZE--9JG6Z7w6enex8hz0AzDgxem-9fDDFjFPKsAMruyIzKkqeSMnF_yyJlrKKPZBFCoyktS0G5FDPytuuja93XJVkPzRGPyaa3znd1bFyfrM7R1-YWrXddcuhD9IOJgx_BPZ7jE3mwdRtw8X_n5PCx2i8_0-1uvVm-b1MDImepKIRGwaVEDZrpUgtm0PICuJGSVVJzi9qiqYStqEUsNQAC5cLm468C8zl5mXpP3v0M41TVNcFg29Y9uiEoKPJxIq8EG1E6oca7EDxadfJNV_uLAqqustQkS11lqaus_A9XnV8N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439765862</pqid></control><display><type>article</type><title>Ontology Guided Information Extraction from Unstructured Text</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Anantharangachar, Raghu ; Ramani, Srinivasan ; S, Rajagopalan</creator><creatorcontrib>Anantharangachar, Raghu ; Ramani, Srinivasan ; S, Rajagopalan</creatorcontrib><description>In this paper, we describe an approach to populate an existing ontology with instance information present in the natural language text provided as input. An ontology is defined as an explicit conceptualization of a shared domain [18], This approach starts with a list of relevant domain ontologies created by human experts, and techniques for identifying the most appropriate ontology to be extended with information from a given text. Then we demonstrate heuristics to extract information from the unstructured text and for adding it as structured information to the selected ontology. This identification of the relevant ontology is critical, as it is used in identifying relevant information in the text. We extract information in the form of semantic triples from the text, guided by the concepts in the ontology. We then convert the extracted information about the semantic class instances into Resource Description Framework (RDF3) and append it to the existing domain ontology. This enables us to perform more precise semantic queries over the semantic triple store thus created. We have achieved 95% accuracy of information extraction in our implementation.</description><identifier>ISSN: 0976-2280</identifier><identifier>EISSN: 0975-9026</identifier><identifier>DOI: 10.5121/ijwest.2013.4102</identifier><language>eng</language><subject>Extraction ; Heuristic ; Human ; Lists ; Queries ; Semantics ; Stores ; Texts</subject><ispartof>International journal of Web &amp; Semantic Technology, 2013-01, Vol.4 (1), p.19-36</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1632-646be6599eb1b2b7b62cef5415c99289b5febfec86f80fee7b11e1056f3b006e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Anantharangachar, Raghu</creatorcontrib><creatorcontrib>Ramani, Srinivasan</creatorcontrib><creatorcontrib>S, Rajagopalan</creatorcontrib><title>Ontology Guided Information Extraction from Unstructured Text</title><title>International journal of Web &amp; Semantic Technology</title><description>In this paper, we describe an approach to populate an existing ontology with instance information present in the natural language text provided as input. An ontology is defined as an explicit conceptualization of a shared domain [18], This approach starts with a list of relevant domain ontologies created by human experts, and techniques for identifying the most appropriate ontology to be extended with information from a given text. Then we demonstrate heuristics to extract information from the unstructured text and for adding it as structured information to the selected ontology. This identification of the relevant ontology is critical, as it is used in identifying relevant information in the text. We extract information in the form of semantic triples from the text, guided by the concepts in the ontology. We then convert the extracted information about the semantic class instances into Resource Description Framework (RDF3) and append it to the existing domain ontology. This enables us to perform more precise semantic queries over the semantic triple store thus created. We have achieved 95% accuracy of information extraction in our implementation.</description><subject>Extraction</subject><subject>Heuristic</subject><subject>Human</subject><subject>Lists</subject><subject>Queries</subject><subject>Semantics</subject><subject>Stores</subject><subject>Texts</subject><issn>0976-2280</issn><issn>0975-9026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNotkDFPwzAQhS0EElXpzpiRJcHnxE48MKCqlEqVurSzFbtnFJTExXZE--9JG6Z7w6enex8hz0AzDgxem-9fDDFjFPKsAMruyIzKkqeSMnF_yyJlrKKPZBFCoyktS0G5FDPytuuja93XJVkPzRGPyaa3znd1bFyfrM7R1-YWrXddcuhD9IOJgx_BPZ7jE3mwdRtw8X_n5PCx2i8_0-1uvVm-b1MDImepKIRGwaVEDZrpUgtm0PICuJGSVVJzi9qiqYStqEUsNQAC5cLm468C8zl5mXpP3v0M41TVNcFg29Y9uiEoKPJxIq8EG1E6oca7EDxadfJNV_uLAqqustQkS11lqaus_A9XnV8N</recordid><startdate>20130131</startdate><enddate>20130131</enddate><creator>Anantharangachar, Raghu</creator><creator>Ramani, Srinivasan</creator><creator>S, Rajagopalan</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130131</creationdate><title>Ontology Guided Information Extraction from Unstructured Text</title><author>Anantharangachar, Raghu ; Ramani, Srinivasan ; S, Rajagopalan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1632-646be6599eb1b2b7b62cef5415c99289b5febfec86f80fee7b11e1056f3b006e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Extraction</topic><topic>Heuristic</topic><topic>Human</topic><topic>Lists</topic><topic>Queries</topic><topic>Semantics</topic><topic>Stores</topic><topic>Texts</topic><toplevel>online_resources</toplevel><creatorcontrib>Anantharangachar, Raghu</creatorcontrib><creatorcontrib>Ramani, Srinivasan</creatorcontrib><creatorcontrib>S, Rajagopalan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of Web &amp; Semantic Technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anantharangachar, Raghu</au><au>Ramani, Srinivasan</au><au>S, Rajagopalan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ontology Guided Information Extraction from Unstructured Text</atitle><jtitle>International journal of Web &amp; Semantic Technology</jtitle><date>2013-01-31</date><risdate>2013</risdate><volume>4</volume><issue>1</issue><spage>19</spage><epage>36</epage><pages>19-36</pages><issn>0976-2280</issn><eissn>0975-9026</eissn><abstract>In this paper, we describe an approach to populate an existing ontology with instance information present in the natural language text provided as input. An ontology is defined as an explicit conceptualization of a shared domain [18], This approach starts with a list of relevant domain ontologies created by human experts, and techniques for identifying the most appropriate ontology to be extended with information from a given text. Then we demonstrate heuristics to extract information from the unstructured text and for adding it as structured information to the selected ontology. This identification of the relevant ontology is critical, as it is used in identifying relevant information in the text. We extract information in the form of semantic triples from the text, guided by the concepts in the ontology. We then convert the extracted information about the semantic class instances into Resource Description Framework (RDF3) and append it to the existing domain ontology. This enables us to perform more precise semantic queries over the semantic triple store thus created. We have achieved 95% accuracy of information extraction in our implementation.</abstract><doi>10.5121/ijwest.2013.4102</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0976-2280
ispartof International journal of Web & Semantic Technology, 2013-01, Vol.4 (1), p.19-36
issn 0976-2280
0975-9026
language eng
recordid cdi_proquest_miscellaneous_1439765862
source EZB-FREE-00999 freely available EZB journals
subjects Extraction
Heuristic
Human
Lists
Queries
Semantics
Stores
Texts
title Ontology Guided Information Extraction from Unstructured Text
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A35%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ontology%20Guided%20Information%20Extraction%20from%20Unstructured%20Text&rft.jtitle=International%20journal%20of%20Web%20&%20Semantic%20Technology&rft.au=Anantharangachar,%20Raghu&rft.date=2013-01-31&rft.volume=4&rft.issue=1&rft.spage=19&rft.epage=36&rft.pages=19-36&rft.issn=0976-2280&rft.eissn=0975-9026&rft_id=info:doi/10.5121/ijwest.2013.4102&rft_dat=%3Cproquest_cross%3E1439765862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439765862&rft_id=info:pmid/&rfr_iscdi=true