Designed Autonomic Motion in Heterogeneous Belousov-Zhabotinsky (BZ)-Gelatin Composites by Synchronicity

Critical technologies from medicine to defense are highly dependent on advanced composite materials. Increasingly there is a greater demand for materials with expanded functionality. The state of the art includes a wide range of responsive composites capable of impressive structural feats such as ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2013-06, Vol.23 (22), p.2835-2842
Hauptverfasser: Smith, Matthew L., Slone, Connor, Heitfeld, Kevin, Vaia, Richard A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2842
container_issue 22
container_start_page 2835
container_title Advanced functional materials
container_volume 23
creator Smith, Matthew L.
Slone, Connor
Heitfeld, Kevin
Vaia, Richard A.
description Critical technologies from medicine to defense are highly dependent on advanced composite materials. Increasingly there is a greater demand for materials with expanded functionality. The state of the art includes a wide range of responsive composites capable of impressive structural feats such as externally triggered shape morphing. Here a different composite concept is presented, one in which a portion of the constituent materials feed off of ambient energy and dynamically couple to convert it to mechanical motion in a cooperative, biomimetic fashion. Using a recently developed self‐oscillating gel based on gelatin and the oscillating Belousov–Zhabotinsky (BZ) reaction, a technique is demonstrated for producing continuous patterned heterogeneous BZ hydrogel composites capable of sustained autonomic function. The coupling between two adjacent reactive patches is demonstrated in an autonomic cantilever actuator which converts chemical energy into amplified mechanical motion. The design of heterogeneous BZ gels for motion using a basic finite element model is discussed. This work represents notable progress toward developing internally responsive, bio‐inspired composite materials for constructing modular autonomic morphing structures and devices. A straightforward technique for fabricating autonomic, heterostructured hydrogels is presented. These gels represent a novel composite concept involving internally responsive and autonomous constituent materials. Critical design parameters are established and a basic modeling approach and material functionality are demonstrated through a coupled patch actuator.
doi_str_mv 10.1002/adfm.201202769
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1439765799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1439765799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4549-20c3a92c4ee3db5072220b74e5565b7e4b8cf4a8de2d66b33786d49955e953b43</originalsourceid><addsrcrecordid>eNqFkE1vEzEQhlcIJErhytkSl3LY1N9eH9OUpJXagqAIlIvl9U4at7t2am9o99-zJSiquHCaGel5RjNvUbwneEIwpse2WXUTignFVEn9ojggksiSYVq93Pfk5-viTc63GBOlGD8o1qeQ_U2ABk23fQyx8w5dxt7HgHxAZ9BDijcQIG4zOoF2LPFXuVzbemRCvhvQ0cnyY7mA1o4zmsVuE7PvIaN6QN-G4NYpBu98P7wtXq1sm-Hd33pYfJ9_up6dlRefF-ez6UXpuOC6pNgxq6njAKypBVaUUlwrDkJIUSvgdeVW3FYN0EbKmjFVyYZrLQRowWrODouj3d5NivdbyL3pfHbQtvbPE4ZwppUUSusR_fAPehu3KYzXGSolY3zcTkdqsqNcijknWJlN8p1NgyHYPAVvnoI3--BHQe-EB9_C8B_aTE_nl8_dcuf63MPj3rXpzkjFlDA_rhbmupp__cLE0nD2G9XLlo8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2663343372</pqid></control><display><type>article</type><title>Designed Autonomic Motion in Heterogeneous Belousov-Zhabotinsky (BZ)-Gelatin Composites by Synchronicity</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Smith, Matthew L. ; Slone, Connor ; Heitfeld, Kevin ; Vaia, Richard A.</creator><creatorcontrib>Smith, Matthew L. ; Slone, Connor ; Heitfeld, Kevin ; Vaia, Richard A.</creatorcontrib><description>Critical technologies from medicine to defense are highly dependent on advanced composite materials. Increasingly there is a greater demand for materials with expanded functionality. The state of the art includes a wide range of responsive composites capable of impressive structural feats such as externally triggered shape morphing. Here a different composite concept is presented, one in which a portion of the constituent materials feed off of ambient energy and dynamically couple to convert it to mechanical motion in a cooperative, biomimetic fashion. Using a recently developed self‐oscillating gel based on gelatin and the oscillating Belousov–Zhabotinsky (BZ) reaction, a technique is demonstrated for producing continuous patterned heterogeneous BZ hydrogel composites capable of sustained autonomic function. The coupling between two adjacent reactive patches is demonstrated in an autonomic cantilever actuator which converts chemical energy into amplified mechanical motion. The design of heterogeneous BZ gels for motion using a basic finite element model is discussed. This work represents notable progress toward developing internally responsive, bio‐inspired composite materials for constructing modular autonomic morphing structures and devices. A straightforward technique for fabricating autonomic, heterostructured hydrogels is presented. These gels represent a novel composite concept involving internally responsive and autonomous constituent materials. Critical design parameters are established and a basic modeling approach and material functionality are demonstrated through a coupled patch actuator.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201202769</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>active matter ; Actuators ; additive manufacturing ; Autonomous ; Biomimetics ; Chemical energy ; Composite materials ; Constituents ; Devices ; Energy harvesting ; Finite element method ; Gelatin ; Hydrogels ; Joining ; Materials science ; Mathematical models ; Modular construction ; Modular equipment ; Modular structures ; Morphing ; oscillating reactions</subject><ispartof>Advanced functional materials, 2013-06, Vol.23 (22), p.2835-2842</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright Wiley Subscription Services, Inc. Jun 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4549-20c3a92c4ee3db5072220b74e5565b7e4b8cf4a8de2d66b33786d49955e953b43</citedby><cites>FETCH-LOGICAL-c4549-20c3a92c4ee3db5072220b74e5565b7e4b8cf4a8de2d66b33786d49955e953b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201202769$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201202769$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids></links><search><creatorcontrib>Smith, Matthew L.</creatorcontrib><creatorcontrib>Slone, Connor</creatorcontrib><creatorcontrib>Heitfeld, Kevin</creatorcontrib><creatorcontrib>Vaia, Richard A.</creatorcontrib><title>Designed Autonomic Motion in Heterogeneous Belousov-Zhabotinsky (BZ)-Gelatin Composites by Synchronicity</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>Critical technologies from medicine to defense are highly dependent on advanced composite materials. Increasingly there is a greater demand for materials with expanded functionality. The state of the art includes a wide range of responsive composites capable of impressive structural feats such as externally triggered shape morphing. Here a different composite concept is presented, one in which a portion of the constituent materials feed off of ambient energy and dynamically couple to convert it to mechanical motion in a cooperative, biomimetic fashion. Using a recently developed self‐oscillating gel based on gelatin and the oscillating Belousov–Zhabotinsky (BZ) reaction, a technique is demonstrated for producing continuous patterned heterogeneous BZ hydrogel composites capable of sustained autonomic function. The coupling between two adjacent reactive patches is demonstrated in an autonomic cantilever actuator which converts chemical energy into amplified mechanical motion. The design of heterogeneous BZ gels for motion using a basic finite element model is discussed. This work represents notable progress toward developing internally responsive, bio‐inspired composite materials for constructing modular autonomic morphing structures and devices. A straightforward technique for fabricating autonomic, heterostructured hydrogels is presented. These gels represent a novel composite concept involving internally responsive and autonomous constituent materials. Critical design parameters are established and a basic modeling approach and material functionality are demonstrated through a coupled patch actuator.</description><subject>active matter</subject><subject>Actuators</subject><subject>additive manufacturing</subject><subject>Autonomous</subject><subject>Biomimetics</subject><subject>Chemical energy</subject><subject>Composite materials</subject><subject>Constituents</subject><subject>Devices</subject><subject>Energy harvesting</subject><subject>Finite element method</subject><subject>Gelatin</subject><subject>Hydrogels</subject><subject>Joining</subject><subject>Materials science</subject><subject>Mathematical models</subject><subject>Modular construction</subject><subject>Modular equipment</subject><subject>Modular structures</subject><subject>Morphing</subject><subject>oscillating reactions</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1vEzEQhlcIJErhytkSl3LY1N9eH9OUpJXagqAIlIvl9U4at7t2am9o99-zJSiquHCaGel5RjNvUbwneEIwpse2WXUTignFVEn9ojggksiSYVq93Pfk5-viTc63GBOlGD8o1qeQ_U2ABk23fQyx8w5dxt7HgHxAZ9BDijcQIG4zOoF2LPFXuVzbemRCvhvQ0cnyY7mA1o4zmsVuE7PvIaN6QN-G4NYpBu98P7wtXq1sm-Hd33pYfJ9_up6dlRefF-ez6UXpuOC6pNgxq6njAKypBVaUUlwrDkJIUSvgdeVW3FYN0EbKmjFVyYZrLQRowWrODouj3d5NivdbyL3pfHbQtvbPE4ZwppUUSusR_fAPehu3KYzXGSolY3zcTkdqsqNcijknWJlN8p1NgyHYPAVvnoI3--BHQe-EB9_C8B_aTE_nl8_dcuf63MPj3rXpzkjFlDA_rhbmupp__cLE0nD2G9XLlo8</recordid><startdate>20130613</startdate><enddate>20130613</enddate><creator>Smith, Matthew L.</creator><creator>Slone, Connor</creator><creator>Heitfeld, Kevin</creator><creator>Vaia, Richard A.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130613</creationdate><title>Designed Autonomic Motion in Heterogeneous Belousov-Zhabotinsky (BZ)-Gelatin Composites by Synchronicity</title><author>Smith, Matthew L. ; Slone, Connor ; Heitfeld, Kevin ; Vaia, Richard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4549-20c3a92c4ee3db5072220b74e5565b7e4b8cf4a8de2d66b33786d49955e953b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>active matter</topic><topic>Actuators</topic><topic>additive manufacturing</topic><topic>Autonomous</topic><topic>Biomimetics</topic><topic>Chemical energy</topic><topic>Composite materials</topic><topic>Constituents</topic><topic>Devices</topic><topic>Energy harvesting</topic><topic>Finite element method</topic><topic>Gelatin</topic><topic>Hydrogels</topic><topic>Joining</topic><topic>Materials science</topic><topic>Mathematical models</topic><topic>Modular construction</topic><topic>Modular equipment</topic><topic>Modular structures</topic><topic>Morphing</topic><topic>oscillating reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smith, Matthew L.</creatorcontrib><creatorcontrib>Slone, Connor</creatorcontrib><creatorcontrib>Heitfeld, Kevin</creatorcontrib><creatorcontrib>Vaia, Richard A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smith, Matthew L.</au><au>Slone, Connor</au><au>Heitfeld, Kevin</au><au>Vaia, Richard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designed Autonomic Motion in Heterogeneous Belousov-Zhabotinsky (BZ)-Gelatin Composites by Synchronicity</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2013-06-13</date><risdate>2013</risdate><volume>23</volume><issue>22</issue><spage>2835</spage><epage>2842</epage><pages>2835-2842</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Critical technologies from medicine to defense are highly dependent on advanced composite materials. Increasingly there is a greater demand for materials with expanded functionality. The state of the art includes a wide range of responsive composites capable of impressive structural feats such as externally triggered shape morphing. Here a different composite concept is presented, one in which a portion of the constituent materials feed off of ambient energy and dynamically couple to convert it to mechanical motion in a cooperative, biomimetic fashion. Using a recently developed self‐oscillating gel based on gelatin and the oscillating Belousov–Zhabotinsky (BZ) reaction, a technique is demonstrated for producing continuous patterned heterogeneous BZ hydrogel composites capable of sustained autonomic function. The coupling between two adjacent reactive patches is demonstrated in an autonomic cantilever actuator which converts chemical energy into amplified mechanical motion. The design of heterogeneous BZ gels for motion using a basic finite element model is discussed. This work represents notable progress toward developing internally responsive, bio‐inspired composite materials for constructing modular autonomic morphing structures and devices. A straightforward technique for fabricating autonomic, heterostructured hydrogels is presented. These gels represent a novel composite concept involving internally responsive and autonomous constituent materials. Critical design parameters are established and a basic modeling approach and material functionality are demonstrated through a coupled patch actuator.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.201202769</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2013-06, Vol.23 (22), p.2835-2842
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_1439765799
source Wiley Online Library - AutoHoldings Journals
subjects active matter
Actuators
additive manufacturing
Autonomous
Biomimetics
Chemical energy
Composite materials
Constituents
Devices
Energy harvesting
Finite element method
Gelatin
Hydrogels
Joining
Materials science
Mathematical models
Modular construction
Modular equipment
Modular structures
Morphing
oscillating reactions
title Designed Autonomic Motion in Heterogeneous Belousov-Zhabotinsky (BZ)-Gelatin Composites by Synchronicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designed%20Autonomic%20Motion%20in%20Heterogeneous%20Belousov-Zhabotinsky%20(BZ)-Gelatin%20Composites%20by%20Synchronicity&rft.jtitle=Advanced%20functional%20materials&rft.au=Smith,%20Matthew%20L.&rft.date=2013-06-13&rft.volume=23&rft.issue=22&rft.spage=2835&rft.epage=2842&rft.pages=2835-2842&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201202769&rft_dat=%3Cproquest_cross%3E1439765799%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2663343372&rft_id=info:pmid/&rfr_iscdi=true